
87

The Programmer’s Interface to RPC 4

This chapter addresses the C interface to RPC and describes how to write
network applications using RPC. For a complete specification of the routines in
the RPC library, see the rpc(3N) and related man pages.

RPC Is Multithread Safe
The client and server interfaces described in this chapter are multithread safe,
except where noted (such as raw mode). This means that applications that
contain RPC function calls can be used freely in a multithreaded application.

Simplified Interface page 88

Standard Interfaces page 96

Testing Programs Using Low-level Raw RPC page 113

Advanced RPC Programming Techniques page 116

Multithreaded RPC Programming page 139

MT Auto Mode page 147

MT User Mode page 151

Porting From TS-RPC to TI-RPC page 164

88 ONC+ Developer’s Guide—May 1995

4

Simplified Interface
The simplified interface is the easiest level to use because it does not require
the use of any other RPC routines. It also limits control of the underlying
communications mechanisms. Program development at this level can be rapid,
and is directly supported by the rpcgen compiler. For most applications,
rpcgen and its facilities are sufficient.

Some RPC services are not available as C functions, but they are available as
RPC programs. The simplified interface library routines provide direct access
to the RPC facilities for programs that do not require fine levels of control.
Routines such as rusers() are in the RPC services library librpcsvc.
Code Example 4-1 is a program that displays the number of users on a remote
host. It calls the RPC library routine, rusers().

Code Example 4-1 rusers Program

#include <stdio.h>

/*
 * a program that calls the rusers() service
 */

main(argc, argv)
int argc;
char **argv;

{
int num;

if (argc != 2) {
fprintf(stderr, "usage: %s hostname\n", argv[0]);
exit(1);

}
if ((num = rusers(argv[1])) < 0) {

fprintf(stderr, "error: rusers\n");
exit(1);

}
fprintf(stderr, "%d users on %s\n", num, argv[1]);
exit(0);

}

 Compile the program in Code Example 4-1 with:

cc program.c -lrpcsvc -lnsl

The Programmer’s Interface to RPC 89

4

Client

There is just one function on the client side of the simplified interface:
rpc_call(). It has nine parameters:

int 0 or error code

rpc_call (

char *host /* Name of server host */
u_long prognum /* Server program number */
u_long versnum /* Server version number */
xdrproc_t inproc /* XDR filter to encode arg */
char *in /* Pointer to argument */
xdr_proc_t outproc /* Filter to decode result */
char *out /* Address to store result */
char *nettype /* For transport selection */

);

This function calls the procedure specified by prognum, versum, and procnum
on the host. The argument to be passed to the remote procedure is pointed to
by the in parameter, and inproc is the XDR filter to encode this argument. The
out parameter is an address where the result from the remote procedure is to
be placed. outproc is an XDR filter which will decode the result and place it
at this address.

The client blocks on rpc_call() until it receives a reply from the server. If
the server accepts, it returns RPC_SUCCESS with the value of zero. It will
return a non-zero value if the call was unsuccessful. This value can be cast to
the type clnt_stat, an enumerated type defined in the RPC include files and
interpreted by the clnt_sperrno() function. This function returns a pointer
to a standard RPC error message corresponding to the error code.

In the example, all “visible” transports listed in /etc/netconfig are tried.
Adjusting the number of retries requires use of the lower levels of the RPC
library.

Multiple arguments and results are handled by collecting them in structures.

The example in Code Example 4-1, changed to use the simplified interface,
looks like Code Example 4-2.

90 ONC+ Developer’s Guide—May 1995

4

Code Example 4-2 rusers Program Using Simplified Interface

#include <stdio.h>
#include <utmp.h>
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>

/* a program that calls the RUSERSPROG RPC program */

main(argc, argv)
int argc;
char **argv;

{
unsigned long nusers;
enum clnt_stat;

if (argc != 2) {
fprintf(stderr, "usage: rusers hostname\n");
exit(1);

}
if(clnt_stat = rpc_call(argv[1], RUSERSPROG, RUSERSVERS,
 RUSERSPROC_NUM, xdr_void, (char *)0, xdr_u_long,
 (char *)&nusers, "visible") != RPC_SUCCESS) {

clnt_perrno(clnt_stat);
exit(1);

}
fprintf(stderr, "%d users on %s\n", nusers, argv[1]);
exit(0);

}

Since data types may be represented differently on different machines,
rpc_call() needs both the type of, and a pointer to, the RPC argument
(similarly for the result). For RUSERSPROC_NUM, the return value is an
unsigned long, so the first return parameter of rpc_call() is
xdr_u_long() (which is for an unsigned long) and the second is &nusers
(which points to unsigned long storage). Because RUSERSPROC_NUM has no
argument, the XDR encoding function of rpc_call() is xdr_void() and its
argument is NULL.

The Programmer’s Interface to RPC 91

4

 Server

The server program using the simplified interface is very straightforward.
It simply calls rpc_reg() to register the procedure to be called, and then it
calls svc_run(), the RPC library’s remote procedure dispatcher, to wait for
requests to come in.

rpc_reg() has the following arguments:

rpc_reg (

u_long prognum /* Server program number */
u_long versnum /* Server version number */
u_long procnum /* server procedure number */
char *procname /* Name of remote function */
xdrproc_t inproc /* Filter to encode arg */
xdrproc_t outproc /* Filter to decode result */
char *nettype /* For transport selection */

);

svc_run() invokes service procedures in response to RPC call messages. The
dispatcher in rpc_reg() takes care of decoding remote procedure arguments
and encoding results, using the XDR filters specified when the remote
procedure was registered. Some notes about the server program:

• Most RPC applications follow the naming convention of appending a _1 to
the function name. The sequence _n is added to the procedure names to
indicate the version number n of the service.

• The argument and result are passed as addresses. This is true for all
functions that are called remotely. If yoiu pass NULL as a result of a
function, then no reply is sent to the client. It is assumed that there is no
reply to send.

• The result must exist in static data space because its value is accessed after
the actual procedure has exited. The RPC library function that builds the
RPC reply message accesses the result and sends the value back to the client.

• Only a single argument is allowed. If there are multiple elements of data,
they should be wrapped inside a structure which can then be passed as a
single entity.

• The procedure is registered for each transport of the specified type. If the
type parameter is (char *)NULL, the procedure is registered for all
transports specified in NETPATH.

92 ONC+ Developer’s Guide—May 1995

4

Hand-Coded Registration Routine

You can sometimes implement faster or more compact code than can rpcgen.
rpcgen handles the generic code-generation cases. The following program is
an example of a hand-coded registration routine. It registers a single procedure
and enters svc_run() to service requests.

Code Example 4-3 Hand-Coded Registration Server

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>
void *rusers();

main()
{

if(rpc_reg(RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM, rusers,
 xdr_void, xdr_u_long, "visible") == -1) {

fprintf(stderr, "Couldn’t Register\n");
exit(1);

}
svc_run(); /* Never returns */
fprintf(stderr, "Error: svc_run returned!\n");
exit(1);

}

rpc_reg() can be called as many times as is needed to register different
programs, versions, and procedures.

Passing Arbitrary Data Types

Data types passed to and received from remote procedures can be any of a set
of predefined types, or can be programmer-defined types. RPC handles
arbitrary data structures, regardless of different machines’ byte orders or
structure layout conventions, by always converting them to a standard transfer
format called external data representation (XDR) before sending them over the
transport. The conversion from a machine representation to XDR is called
serializing, and the reverse process is called deserializing.

The Programmer’s Interface to RPC 93

4

The translator arguments of rpc_call() and rpc_reg() can specify an XDR
primitive procedure, like xdr_u_long(), or a programmer-supplied routine
that processes a complete argument structure. Argument processing routines
must take only two arguments: a pointer to the result and a pointer to the XDR
handle.

The nonprimitive xdr_string, which takes more than two parameters, is
called from xdr_wrapstring().

For an example of a programmer-supplied routine, the structure:

struct simple {
int a;
short b;

} simple;

contains the calling arguments of a procedure. The XDR routine xdr_simple()
translates the argument structure as shown in Code Example 4-4.

Code Example 4-4 xdr_simple Routine

#include <rpc/rpc.h>
#include "simple.h"

bool_t
xdr_simple(xdrsp, simplep)

XDR *xdrsp;
struct simple *simplep;

{
if (!xdr_int(xdrsp, &simplep->a))

return (FALSE);
if (!xdr_short(xdrsp, &simplep->b))

return (FALSE);
return (TRUE);

}

Table 4-1 XDR Primitive Type Routines

XDR Primitive Routines

xdr_int() xdr_netobj() xdr_u_long() xdr_enum()

xdr_long() xdr_float() xdr_u_short() xdr_bool()

xdr_short() xdr_double() xdr_u_short() xdr_wrapstring()

xdr_char() xdr_quadruple xdr_u_char() xdr_void()

94 ONC+ Developer’s Guide—May 1995

4

An equivalent routine can be generated automatically by rpcgen.

An XDR routine returns nonzero (a C TRUE) if it completes successfully, and
zero otherwise. A complete description of XDR is provided in Appendix C,
“XDR Protocol Specification."

For example, to send a variable-sized array of integers, it is packaged in a
structure containing the array and its length:

struct varintarr {
int *data;
int arrlnth;

} arr;

Translate the array with xdr_varintarr(), as shown in Code Example 4-5.

Code Example 4-5 xdr_varintarr Syntax Use

bool_t
xdr_varintarr(xdrsp, arrp)

XDR *xdrsp;
struct varintarr *arrp;

{
return(xdr_array(xdrsp, (caddr_t)&arrp->data,

(u_int *)&arrp->arrlnth, MAXLEN, sizeof(int), xdr_int));
}

The arguments of xdr_array() are the XDR handle, a pointer to the array, a
pointer to the size of the array, the maximum array size, the size of each array
element, and a pointer to the XDR routine to translate each array element. If
the size of the array is known in advance, use xdr_vector(), as shown in
Code Example 4-6.

Code Example 4-6 xdr_vector Syntax Use

int intarr[SIZE];

bool_t

Table 4-2 XDR Building Block Routines

Prefabricated Routines

xdr_array() xdr_bytes() xdr_reference()

xdr_vector() xdr_union() xdr_pointer()

xdr_string() xdr_opaque()

The Programmer’s Interface to RPC 95

4

xdr_intarr(xdrsp, intarr)
XDR *xdrsp;
int intarr[];

{
return (xdr_vector(xdrsp, intarr, SIZE, sizeof(int), xdr_int));

}

XDR converts quantities to 4-byte multiples when serializing. For arrays of
characters, each character occupies 32 bits. xdr_bytes() packs characters. It
has four parameters similar to the first four parameters of xdr_array().

Null-terminated strings are translated by xdr_string(). It is like
xdr_bytes() with no length parameter. On serializing it gets the string
length from strlen(), and on deserializing it creates a null-terminated string.

Code Example 4-7 calls the built-in functions xdr_string() and
xdr_reference(), which translates pointers to pass a string, and struct
simple from the previous examples.

Code Example 4-7 xdr_reference Syntax Use

struct finalexample {
char *string;
struct simple *simplep;

} finalexample;

bool_t
xdr_finalexample(xdrsp, finalp)

XDR *xdrsp;
struct finalexample *finalp;

{
if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN))

return (FALSE);
if (!xdr_reference(xdrsp, &finalp->simplep,
 sizeof(struct simple), xdr_simple))

return (FALSE);
return (TRUE);

}

Note that xdr_simple() could have been called here instead of
xdr_reference().

96 ONC+ Developer’s Guide—May 1995

4

Standard Interfaces
Interfaces to standard levels of the RPC package provide increasing control
over RPC communications. Programs that use this control are more complex.
Effective programming at these lower levels requires more knowledge of
computer network fundamentals. The top, intermediate, expert, and bottom
levels are part of the standard interfaces.

This section shows how to control RPC details by using lower levels of the
RPC library. For example, you can select the transport protocol, which can be
done at the simplified interface level only through the NETPATH variable. You
should be familiar with the TLI in order to use these routines.

The routines shown in Table 4-3 cannot be used through the simplified
interface because they require a transport handle. For example, there is no way
to allocate and free memory while serializing or deserializing with XDR
routines at the simplified interface.

Top Level Interface

At the top level, the application can specify the type of transport to use but not
the specific transport. This level differs from the simplified interface in that the
application creates its own transport handles, in both the client and server.

Client

Assume the header file in Code Example 4-8.

Code Example 4-8 time_prot.h Header File

/* time_prot.h */
#include <rpc/rpc.h>
#include <rpc/types.h>

Table 4-3 XDR Routines Requiring a Transport Handle

Do Not Use With Simplified Interface

clnt_call() clnt_destroy() clnt_control()

clnt_perrno() clnt_pcreateerror() clnt_perror()

svc_destroy()

The Programmer’s Interface to RPC 97

4

struct timev {
int second;
int minute;
int hour;

};
typedef struct timev timev;
bool_t xdr_timev();

#define TIME_PROG ((u_long)0x40000001)
#define TIME_VERS ((u_long)1)
#define TIME_GET ((u_long)1)

Code Example 4-9 shows the client side of a trivial date service using top-level
service routines. The transport type is specified as an invocation argument of
the program.

Code Example 4-9 Client for Trivial Date Service

#include <stdio.h>
#include "time_prot.h"

#define TOTAL (30)
/*
 * Caller of trivial date service
 * usage: calltime hostname
 */
main(argc, argv)

int argc;
char *argv[];

{
struct timeval time_out;
CLIENT *client;
enum clnt_stat stat;
struct timev timev;
char *nettype;

if (argc != 2 && argc != 3) {
fprintf(stderr,”usage:%s host[nettype]\n”,argv[0]);
exit(1);

}
if (argc == 2)

nettype = "netpath"; /* Default */
else

nettype = argv[2];
client = clnt_create(argv[1], TIME_PROG, TIME_VERS, nettype);
if (client == (CLIENT *) NULL) {

98 ONC+ Developer’s Guide—May 1995

4

clnt_pcreateerror(“Couldn’t create client”);
exit(1);

}
time_out.tv_sec = TOTAL;
time_out.tv_usec = 0;
stat = clnt_call(client, TIME_GET, xdr_void, (caddr_t)NULL,
 xdr_timev, (caddr_t)&timev, time_out);
if (stat != RPC_SUCCESS) {

clnt_perror(client, "Call failed");
exit(1);

}
fprintf(stderr,"%s: %02d:%02d:%02d GMT\n", nettype, timev.hour,
 timev.minute, timev.second);
(void) clnt_destroy(client);
exit(0);

}

If nettype is not specified in the invocation of the program, the string
netpath is substituted. When RPC libraries routines encounter this string, the
value of the NETPATH environment variable governs transport selection.

If the client handle cannot be created, display the reason for the failure with
clnt_pcreateerror(), or get the error status by reading the contents of the
global variable rpc_createerr.

After the client handle is created, clnt_call() is used to make the remote
call. Its arguments are the remote procedure number, an XDR filter for the
input argument, the argument pointer, an XDR filter for the result, the result
pointer, and the time-out period of the call. The program has no arguments, so
xdr_void() is specified. Clean up by calling clnt_destroy().

In the above example, if the programmer wished to bound the time allowed for
client handle creation to thirty seconds, the call to clnt_create() should be
replaced with a call to clnt_create_timed() as shown in the following code
segment:

struct timeval timeout;
timeout.tv_sec = 30; /* 30 seconds */
timeout.tv_usec = 0;

client = clnt_create_timed(argv[1], TIME_PROG, TIME_VERS, nettype,
&timeout);

The Programmer’s Interface to RPC 99

4

Server

Code Example 4-10 shows a top-level implementation of a server for the trivial
date service.

Code Example 4-10 Server for Trivial Date Service

#include <stdio.h>
#include <rpc/rpc.h>
#include "time_prot.h"

static void time_prog();

main(argc,argv)
int argc;
char *argv[];

{
int transpnum;
char *nettype;

if (argc > 2) {

fprintf(stderr, "usage: %s [nettype]\n", argv[0]);
exit(1);

}
if (argc == 2)

nettype = argv[1];
else

nettype = "netpath"; /* Default */
transpnum = svc_create(time_prog,TIME_PROG,TIME_VERS,nettype);
if (transpnum == 0) {

fprintf(stderr,”%s: cannot create %s service.\n”, argv[0],
 nettype);
exit(1);

}
svc_run();

}

/*
 * The server dispatch function
 */
static void
time_prog(rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

100 ONC+ Developer’s Guide—May 1995

4

{
struct timev rslt;
time_t thetime;

switch(rqstp->rq_proc) {
case NULLPROC:

svc_sendreply(transp, xdr_void, NULL);
return;

case TIME_GET:
break;

default:
svcerr_noproc(transp);
return;

}
thetime = time((time_t *) 0);
rslt.second = thetime % 60;
thetime /= 60;
rslt.minute = thetime % 60;
thetime /= 60;
rslt.hour = thetime % 24;
if (!svc_sendreply(transp, xdr_timev, &rslt)) {

svcerr_systemerr(transp);
}

}

svc_create() returns the number of transports on which it created server
handles. time_prog() is the service function called by svc_run() when a
request specifies its program and version numbers. The server returns the
results to the client through svc_sendreply().

When rpcgen is used to generate the dispatch function, svc_sendreply() is
called after the procedure returns, so rslt (in this example) must be declared
static in the actual procedure. svc_sendreply() is called from inside the
dispatch function, so rslt is not declared static.

In this example, the remote procedure takes no arguments. When arguments
must be passed, the calls:

svc_getargs(SVCXPRT_handle, XDR_filter, argument_pointer);
svc_freeargs(SVCXPRT_handle, XDR_filter argument_pointer);

fetch, deserialize (XDR decode), and free the arguments.

The Programmer’s Interface to RPC 101

4

Intermediate Level Interface

 At the intermediate level, the application directly chooses the transport to use.

Client

Code Example 4-11 shows the client side of the time service from “Top Level
Interface” on page 96, written at the intermediate level of RPC. In this example,
the user must name the transport over which the call is made on the command
line.

Code Example 4-11 Client for Time Service, Intermediate Level

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>/* For netconfig structure */
#include "time_prot.h"

#define TOTAL (30)

main(argc,argv)
int argc;
char *argv[];

{
CLIENT *client;
struct netconfig *nconf;
char *netid;
/* Declarations from previous example */

if (argc != 3) {
fprintf(stderr, "usage: %s host netid\n”, argv[0]);
exit(1);

}
netid = argv[2];
if ((nconf = getnetconfigent(netid)) ==
 (struct netconfig *) NULL) {

fprintf(stderr, "Bad netid type: %s\n", netid);
exit(1);

}
client = clnt_tp_create(argv[1], TIME_PROG, TIME_VERS, nconf);
if (client == (CLIENT *) NULL) {

clnt_pcreateerror("Could not create client");
exit(1);

}

102 ONC+ Developer’s Guide—May 1995

4

freenetconfigent(nconf);
/* Same as previous example after this point */

}

In this example, the netconfig structure is obtained by a call to
getnetconfigent(netid). (See the getnetconfig(3N)man page and
Transport Interfaces Programming Guide for more details.) At this level, the
program explicitly selects the network.

In the above example, if the programmer wished to bound the time allowed for
client handle creation to thirty seconds, the call to clnt_tp_create() should
be replaced with a call to clnt_tp_create_timed() as shown in the
following code segment:

struct timeval timeout;
timeout.tv_sec = 30; /* 30 seconds */
timeout.tv_usec = 0;

client = clnt_tp_create_timed(argv[1], TIME_PROG, TIME_VERS, nconf,
&timeout);

Server

Code Example 4-12 shows the corresponding server. The command line that
starts the service must specify the transport over which the service is provided.

Code Example 4-12 Server for Time Service, Intermediate Level

/*
 * This program supplies Greenwich mean time to the client
 * that invokes it. The call format is: server netid
 */
#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h> /* For netconfig structure */
#include "time_prot.h"

static void time_prog();

main(argc, argv)
int argc;
char *argv[];

The Programmer’s Interface to RPC 103

4

{
SVCXPRT *transp;
struct netconfig *nconf;

if (argc != 2) {
fprintf(stderr, "usage: %s netid\n", argv[0]);
exit(1);

}
if ((nconf = getnetconfigent(argv[1])) ==
 (struct netconfig *) NULL) {

fprintf(stderr, "Could not find info on %s\n", argv[1]);
exit(1);

}
transp = svc_tp_create(time_prog, TIME_PROG, TIME_VERS, nconf);
if (transp == (SVCXPRT *) NULL) {

fprintf(stderr, "%s: cannot create %s service\n",
argv[0], argv[1]);

exit(1)
}
freenetconfigent(nconf);
svc_run();

}

static
void time_prog(rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{
/* Code identical to Top Level version */

}

Expert Level Interface

At the expert level, network selection is done the same as at the intermediate
level. The only difference is in the increased level of control that the
application has over the details of the CLIENT and SVCXPRT handles. These
examples illustrate this control, which is exercised using the
clnt_tli_create() and svc_tli_create() routines. For more
information on TLI, see Transport Interfaces Programming Guide.

104 ONC+ Developer’s Guide—May 1995

4

Client

Code Example 4-13 shows a version of clntudp_create() (the client
creation routine for UDP transport) using clnt_tli_create(). The example
shows how to do network selection based on the family of the transport you
choose. clnt_tli_create() is used to create a client handle and to:

• Pass an open TLI file descriptor, which may or may not be bound
• Pass the server’s address to the client
• Specify the send and receive buffer size

Code Example 4-13 Client for RPC Lower Level

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>
#include <netinet/in.h>
/*
 * In earlier implementations of RPC, only TCP/IP and UDP/IP were
 * supported. This version of clntudp_create() is based on
 * TLI/Streams.
 */
CLIENT *
clntudp_create(raddr, prog, vers, wait, sockp)

struct sockaddr_in *raddr; /* Remote address */
u_long prog; /* Program number */
u_long vers; /* Version number */
struct timeval wait; /* Time to wait */
int *sockp; /* fd pointer */

{
CLIENT *cl; /* Client handle */
int madefd = FALSE; /* Is fd opened here */
int fd = *sockp; /* TLI fd */
struct t_bind *tbind; /* bind address */
struct netconfig *nconf; /* netconfig structure */
void *handlep;

if ((handlep = setnetconfig()) == (void *) NULL) {
/* Error starting network configuration */
rpc_createerr.cf_stat = RPC_UNKNOWNPROTO;
return((CLIENT *) NULL);

}
/*
 * Try all the transports until it gets one that is
 * connectionless, family is INET, and preferred name is UDP
 */

The Programmer’s Interface to RPC 105

4

while (nconf = getnetconfig(handlep)) {
if ((nconf->nc_semantics == NC_TPI_CLTS) &&
 (strcmp(nconf->nc_protofmly, NC_INET) == 0) &&
 (strcmp(nconf->nc_proto, NC_UDP) == 0))
 break;

}
if (nconf == (struct netconfig *) NULL)

rpc_createerr.cf_stat = RPC_UNKNOWNPROTO;
goto err;

}
if (fd == RPC_ANYFD) {

fd = t_open(nconf->nc_device, O_RDWR, &tinfo);
if (fd == -1) {

rpc_createerr.cf_stat = RPC_SYSTEMERROR;
goto err;

}
}
if (raddr->sin_port == 0) { /* remote addr unknown */

u_short sport;
/*
 * rpcb_getport() is a user-provided routine that calls
 * rpcb_getaddr and translates the netbuf address to port
 * number in host byte order.
 */
sport = rpcb_getport(raddr, prog, vers, nconf);
if (sport == 0) {

rpc_createerr.cf_stat = RPC_PROGUNAVAIL;
goto err;

}
raddr->sin_port = htons(sport);

}
/* Transform sockaddr_in to netbuf */
tbind = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR);
if (tbind == (struct t_bind *) NULL)

rpc_createerr.cf_stat = RPC_SYSTEMERROR;
goto err;

}
if (t_bind->addr.maxlen < sizeof(struct sockaddr_in))

goto err;
(void) memcpy(tbind->addr.buf, (char *)raddr,
 sizeof(struct sockaddr_in));
tbind->addr.len = sizeof(struct sockaddr_in);
/* Bind fd */
if (t_bind(fd, NULL, NULL) == -1) {

rpc_createerr.ct_stat = RPC_TLIERROR;
goto err;

106 ONC+ Developer’s Guide—May 1995

4

}
cl = clnt_tli_create(fd, nconf, &(tbind->addr), prog, vers,
 tinfo.tsdu, tinfo.tsdu);
/* Close the netconfig file */
(void) endnetconfig(handlep);
(void) t_free((char *) tbind, T_BIND);
if (cl) {

*sockp = fd;
if (madefd == TRUE) {

/* fd should be closed while destroying the handle */
(void)clnt_control(cl,CLSET_FD_CLOSE, (char *)NULL);

}
/* Set the retry time */
(void) clnt_control(l, CLSET_RETRY_TIMEOUT,
 (char *) &wait);
return(cl);

}
err:

if (madefd == TRUE)
(void) t_close(fd);

(void) endnetconfig(handlep);
return((CLIENT *) NULL);

}

The network is selected using setnetconfig(), getnetconfig(), and
endnetconfig().

Note – endnetconfig() is not called until after the call to
clnt_tli_create(), near the end of the example.

clntudp_create() can be passed an open TLI fd. If passed none(fd ==
RPC_ANYFD), it opens its own using the netconfig structure for UDP to find
the name of the device to pass to t_open().

If the remote address is not known (raddr->sin_port == 0), it is
obtained from the remote rpcbind.

After the client handle has been created, you can modify it using calls to
clnt_control(). The RPC library closes the file descriptor when destroying
the handle (as it does with a call to clnt_destroy() when it opens the fd
itself) and sets the retry time-out period.

The Programmer’s Interface to RPC 107

4

Server

Code Example 4-14 shows the server side of Code Example 4-13. It is called
svcudp_create(). The server side uses svc_tli_create().

svc_tli_create() is used when the application needs a fine degree of
control, particularly to:

• Pass an open file descriptor to the application.
• Pass the user’s bind address.
• Set the send and receive buffer sizes. The fd argument may be unbound

when passed in. If it is, then it is bound to a given address, and the address
is stored in a handle. If the bind address is set to NULL and the fd is initially
unbound, it will be bound to any suitable address.

Use rpcb_set() to register the service with rpcbind.

Code Example 4-14 Server for RPC Lower Level

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>
#include <netinet/in.h>

SVCXPRT *
svcudp_create(fd)

register int fd;
{

struct netconfig *nconf;
SVCXPRT *svc;
int madefd = FALSE;
int port;
void *handlep;
struct t_info tinfo;

/* If no transports available */
if ((handlep = setnetconfig()) == (void *) NULL) {

nc_perror("server");
return((SVCXPRT *) NULL);

}
/*
 * Try all the transports until it gets one which is
 * connectionless, family is INET and, name is UDP
 */
while (nconf = getnetconfig(handlep)) {

if ((nconf->nc_semantics == NC_TPI_CLTS) &&

108 ONC+ Developer’s Guide—May 1995

4

 (strcmp(nconf->nc_protofmly, NC_INET) == 0)&&
 (strcmp(nconf->nc_proto, NC_UDP) == 0))

break;
}
if (nconf == (struct netconfig *) NULL) {

endnetconfig(handlep);
return((SVCXPRT *) NULL);

}
if (fd == RPC_ANYFD) {

fd = t_open(nconf->nc_device, O_RDWR, &tinfo);
if (fd == -1) {

(void) endnetconfig();
return((SVCXPRT *) NULL);

}
madefd = TRUE;

} else
t_getinfo(fd, &tinfo);

svc = svc_tli_create(fd, nconf, (struct t_bind *) NULL,
 tinfo.tsdu, tinfo.tsdu);
(void) endnetconfig(handlep);
if (svc == (SVCXPRT *) NULL) {

if (madefd)
(void) t_close(fd);

return((SVCXPRT *)NULL);
}
return (svc);

}

The network selection here is accomplished similar to clntudp_create().
The file descriptor is not bound explicitly to a transport address because
svc_tli_create() does that.

svcudp_create() can use an open fd. It will open one itself using the
selected netconfig structure, if none is provided.

Bottom Level Interface

The bottom-level interface to RPC lets the application control all options.
clnt_tli_create() and the other expert-level RPC interface routines are
based on these routines. You rarely use these low-level routines.

Bottom-level routines create internal data structures, buffer management, RPC
headers, and so on. Callers of these routines, like the expert level routine
clnt_tli_create(), must initialize the cl_netid and cl_tp fields in the

The Programmer’s Interface to RPC 109

4

client handle. For a created handle, cl_netid is the network identifier (for
example udp) of the transport and cl_tp is the device name of that transport
(for example /dev/udp). The routines clnt_dg_create() and
clnt_vc_create() set the clnt_ops and cl_private fields.

Client

Code Example 4-15 shows calls to clnt_vc_create() and
clnt_dg_create().

Code Example 4-15 Client for Bottom Level

/*
 * variables are:
 * cl: CLIENT *
 * tinfo: struct t_info returned from either t_open or t_getinfo
 * svcaddr: struct netbuf *
 */

switch(tinfo.servtype) {
case T_COTS:
case T_COTS_ORD:

cl = clnt_vc_create(fd, svcaddr,
 prog, vers, sendsz, recvsz);
break;

case T_CLTS:
cl = clnt_dg_create(fd, svcaddr,
 prog, vers, sendsz, recvsz);
break;

default:
goto err;

}

These routines require that the file descriptor is open and bound. svcaddr is
the address of the server.

Server

Code Example 4-16 is an example of creating a bottom-level server.

Code Example 4-16 Server for Bottom Level

/*
 * variables are:
 * xprt: SVCXPRT *

110 ONC+ Developer’s Guide—May 1995

4

 */
switch(tinfo.servtype) {

case T_COTS_ORD:
case T_COTS:

xprt = svc_vc_create(fd, sendsz, recvsz);
break;

case T_CLTS:
xprt = svc_dg_create(fd, sendsz, recvsz);
break;

default:
goto err;

}

Server Caching

svc_dg_enablecache() initiates service caching for datagram transports.
Caching should be used only in cases where a server procedure is a “once
only” kind of operation, because executing a cached server procedure multiple
times will yield different results.

svc_dg_enablecache(xprt, cache_size)
SVCXPRT *xprt;
unsigned long cache_size;

This function allocates a duplicate request cache for the service endpoint xprt,
large enough to hold cache_size entries. A duplicate request cache is needed
if the service contains procedures with varying results. Once enabled, there is
no way to disable caching.

Low-Level Data Structures

The following are for reference only. The implementation may change.

First is the client RPC handle, defined in <rpc/clnt.h>. Low-level
implementations must provide and initialize one handle per connection, as
shown in Code Example 4-17.

Code Example 4-17 RPC Client Handle Structure

typedef struct {
AUTH *cl_auth; /* authenticator */
struct clnt_ops {

enum clnt_stat(*cl_call)(); /* call remote procedure */
void (*cl_abort)(); /* abort a call */

The Programmer’s Interface to RPC 111

4

void (*cl_geterr)(); /* get specific error code */
bool_t (*cl_freeres)(); /* frees results */
void (*cl_destroy)(); /* destroy this structure */
bool_t (*cl_control)(); /* the ioctl() of rpc */

} *cl_ops;
caddrt_t cl_private; /* private stuff */
char *cl_netid; /* network token *l
char *cl_tp; /* device name */

} CLIENT;

The first field of the client-side handle is an authentication structure, defined in
<rpc/auth.h>. By default, it is set to AUTH_NONE. A client program must
initialize cl_auth appropriately, as shown in Code Example 4-18.

Code Example 4-18 Client Authentication Handle

typedef struct {
struct opaque_auth ah_cred;
struct opaque_auth ah_verf;
union des_block ah_key;
struct auth_ops {

void (*ah_nextverf)();
int (*ah_marshal)(); /* nextverf & serialize */
int (*ah_validate)(); /* validate varifier */
int (*ah_refresh)(); /* refresh credentials */
void (*ah_destroy)(); /* destroy this structure */

} *ah_ops;
caddr_t ah_private;

} AUTH;

In the AUTH structure, ah_cred contains the caller’s credentials, and
ah_verf contains the data to verify the credentials. See “Authentication” on
page 123 for details.

Code Example 4-19 shows the server transport handle.

Code Example 4-19 Server Transport Handle

typedef struct {
int xp_fd;

#define xp_sock xp_fd
u_short xp_port; /* associated port number. Obsoleted */
struct xp_ops {
 bool_t (*xp_recv)(); /* receive incoming requests */
 enum xprt_stat (*xp_stat)(); /* get transport status */
 bool_t (*xp_getargs)(); /* get arguments */

112 ONC+ Developer’s Guide—May 1995

4

 bool_t (*xp_reply)(); /* send reply */
 bool_t (*xp_freeargs)(); /* free mem alloc for args */
 void (*xp_destroy)(); /* destroy this struct */
} *xp_ops;
int xp_addrlen; /* length of remote addr. Obsoleted */
char *xp_tp; /* transport provider device name */
char *xp_netid; /* network token */
struct netbuf xp_ltaddr; /* local transport address */
struct netbuf xp_rtaddr; /* remote transport address */
char xp_raddr[16]; /* remote address. Now obsoleted */
struct opaque_auth xp_verf; /* raw response verifier */
caddr_t xp_p1; /* private: for use by svc ops */
caddr_t xp_p2; /* private: for use by svc ops */
caddr_t xp_p3; /* private: for use by svc lib */

} SVCXPRT;

Table 4-4 shows the fields for the server transport handle.

The rest of the fields are initialized by the bottom-level server routines
svc_dg_create() and svc_vc_create().

Table 4-4 RPC Server Transport Handle Fields

xp_fd The file descriptor associated with the handle. Two or more
server handles can share the same file descriptor.

xp_netid The network identifier (e.g. udp) of the transport on which
the handle is created and xp_tp is the device name
associated with that transport.

xp_ltaddr The server’s own bind address.

xp_rtaddr The address of the remote caller (and so may change from
call to call).

xp_netid
xp_tp
xp_ltaddr

Initialized by svc_tli_create() and other expert-level
routines.

The Programmer’s Interface to RPC 113

4

For connection-oriented endpoints, the fields in Table 4-5 are not valid until a
connection has been requested and accepted for the server:

Testing Programs Using Low-level Raw RPC
There are two pseudo-RPC interface routines that bypass all the network
software. The routines shown in Code Example 4-20, clnt_raw_create()
and svc_raw_create(), do not use any real transport.

Note – Do not use raw mode on production systems. Raw mode is intended as
a debugging aid only. Raw mode is not MT safe.

Code Example 4-20 is compiled and linked using the following Makefile:

all: raw
CFLAGS += -g
raw: raw.o
cc -g -o raw raw.o -lnsl

Code Example 4-20 Simple Program Using Raw RPC

/*
 * A simple program to increment a number by 1
 */

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpc/raw.h>

#define prognum 0x40000001
#define versnum 1
#define INCR 1

Table 4-5 RPC Connection-Oriented Endpoints

Fields Not Valid Until Connection Is Accepted

xp_fd xp_ops xp_p1

xp_p2 xp_verf xp_tp

xp_ltaddr xp_rtaddr xp_netid

114 ONC+ Developer’s Guide—May 1995

4

struct timeval TIMEOUT = {0, 0};
static void server();

main (argc, argv)
int argc;
char **argv;

{

CLIENT *cl;
SVCXPRT *svc;
int num = 0, ans;
int flag;

if (argc == 2)
num = atoi(argv[1]);
svc = svc_raw_create();

if (svc == (SVCXPRT *) NULL) {
fprintf(stderr, "Could not create server handle\n");
exit(1);

}
flag = svc_reg(svc, prognum, versnum, server,
 (struct netconfig *) NULL);

 if (flag == 0) {
 fprintf(stderr, "Error: svc_reg failed.\n");
 exit(1);
}
cl = clnt_raw_create(prognum, versnum);
if (cl == (CLIENT *) NULL) {

clnt_pcreateerror("Error: clnt_raw_create");
exit(1);

}
if (clnt_call(cl, INCR, xdr_int, (caddr_t) &num, xdr_int,
 (caddr_t) &ans, TIMEOUT)
 != RPC_SUCCESS) {

clnt_perror(cl, "Error: client_call with raw");
exit(1);

}
printf("Client: number returned %d\n", ans);
exit(0);

}

static void
server(rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

The Programmer’s Interface to RPC 115

4

{
int num;

 fprintf(stderr, "Entering server procedure.\n");

switch(rqstp->rq_proc) {
case NULLPROC:

if (svc_sendreply(transp, xdr_void,
(caddr_t) NULL) == FALSE) {
fprintf(stderr, "error in null proc\n");
exit(1);

}
return;

case INCR:
break;

default:
svcerr_noproc(transp);
return;

}
if (!svc_getargs(transp, xdr_int, &num)) {

svcerr_decode(transp);
return;

}
 fprintf(stderr, "Server procedure: about to increment.\n");

num++;
if (svc_sendreply(transp, xdr_int, &num) == FALSE) {

fprintf(stderr, "error in sending answer\n");
exit (1);

}
 fprintf(stderr, "Leaving server procedure.\n");
}

Note the following points in Code Example 4-20:

• The server must be created before the client.

• svc_raw_create() has no parameters.

• The server is not registered with rpcbind. The last parameter to
svc_reg() is (struct netconfig *) NULL, which means that it will
not be registered with rpcbind.

• svc_run() is not called.

• All the RPC calls occur within the same thread of control.

• The server-dispatch routine is the same as for normal RPC servers.

116 ONC+ Developer’s Guide—May 1995

4

Advanced RPC Programming Techniques
This section addresses areas of occasional interest to developers using the
lower level interfaces of the RPC package. The topics are:

• poll() on the server— how a server can call the dispatcher directly if
calling svc_run() is not feasible

• Broadcast RPC — how to use the broadcast mechanisms
• Batching —how to improve performance by batching a series of calls
• Authentication — what methods are available in this release
• Port monitors — how to interface with the inetd and listener port

monitors
• Multiple program versions — how to service multiple program versions

poll() on the Server Side

This section applies only to servers running RPC in single-threaded (default)
mode.

A process that services RPC requests and performs some other activity cannot
always call svc_run(). If the other activity periodically updates a data
structure, the process can set a SIGALRM signal before calling svc_run(). This
allows the signal handler to process the data structure and return control to
svc_run() when done.

A process can bypass svc_run() and access the dispatcher directly with the
svc_getreqset() call. Given the file descriptors of the transport endpoints
associated with the programs being waited on, the process can have its own
poll() that waits on both the RPC file descriptors and its own descriptors.

Code Example 4-21 shows svc_run(). svc_pollset is an array of pollfd
structures that is derived, through a call to __rpc_select_to_poll(), from
svc_fdset. The array can change every time any RPC library routine is called,
because descriptors are constantly being opened and closed.
svc_getreq_poll() is called when poll() determines that an RPC request
has arrived on some RPC file descriptors.

Note – The functions __rpc_dtbsize() and __rpc_select_to_poll() are
not part of the SVID, but they are available in the libnsl library. The
descriptions of these functions are included here so that you may create
versions of these functions for non-Solaris implementations.

The Programmer’s Interface to RPC 117

4

int __rpc_select_to_poll(int fdmax, fd_set *fdset, struct pollfd
*pollset)

Given an fd_set pointer and the number of bits to check in it, this function
initializes the supplied pollfd array for RPC’s use. RPC polls only for input
events. The number of pollfd slots that were initialized is returned.

int __rpc_dtbsize()

This function calls the getrlimit() function to determine the maximum
value that the system may assign to a newly created file descriptor. The result
is cached for efficiency.

For more information on the SVID routines in this section, see the
rpc_svc_calls(3N) and the poll(2)man pages.

Code Example 4-21 svc_run() and poll()

void
svc_run()
{

int nfds;
int dtbsize = __rpc_dtbsize();
int i;
struct pollfd svc_pollset[fd_setsize];

for (;;) {
/*
 * Check whether there is any server fd on which we may have
 * to wait.
 */
nfds = __rpc_select_to_poll(dtbsize, &svc_fdset,
 svc_pollset);
if (nfds == 0)

break;/* None waiting, hence quit */

switch (i = poll(svc_pollset, nfds, -1)) {
case -1:

/*
 * We ignore all errors, continuing with the assumption
 * that it was set by the signal handlers (or any
 * other outside event) and not caused by poll().
 */

case 0:
continue;

default:
svc_getreq_poll(svc_pollset, i);

118 ONC+ Developer’s Guide—May 1995

4

}
}

}

Broadcast RPC

When an RPC broadcast is issued, a message is sent to all rpcbind daemons
on a network. An rpcbind daemon with which the requested service is
registered forwards the request to the server. The main differences between
broadcast RPC and normal RPC calls are:

• Normal RPC expects one answer; broadcast RPC expects many answers (one
or more answer from each responding machine).

• Broadcast RPC works only on connectionless protocols that support
broadcasting, such as UDP.

• With broadcast RPC, all unsuccessful responses are filtered out; so, if there is
a version mismatch between the broadcaster and a remote service, the
broadcaster never hears from the service.

• Only datagram services registered with rpcbind are accessible through
broadcast RPC; service addresses may vary from one host to another, so
rpc_broadcast sends messages to rpcbind’s network address.

• The size of broadcast requests is limited by the maximum transfer unit
(MTU) of the local network; the MTU for Ethernet is 1500 bytes.

Code Example 4-22 shows how rpc_broadcast() is used and describes its
arguments.

Code Example 4-22 RPC Broadcast

/*
 * bcast.c: example of RPC broadcasting use.
 */

#include <stdio.h>
#include <rpc/rpc.h>

main(argc, argv)
int argc;
char *argv[];

{
enum clnt_stat rpc_stat;
u_long prognum, vers;
struct rpcent *re;

The Programmer’s Interface to RPC 119

4

if(argc != 3) {
fprintf(stderr, "usage : %s RPC_PROG VERSION\n", argv[0]);
exit(1);

}

if (isdigit(*argv[1]))
prognum = atoi(argv[1]);

else {
re = getrpcbyname(argv[1]);
if (! re) {

fprintf(stderr, "Unknown RPC service %s\n", argv[1]);
exit(1);

}
prognum = re->r_number;

}
vers = atoi(argv[2]);
rpc_stat = rpc_broadcast(prognum, vers, NULLPROC, xdr_void,
 (char *)NULL, xdr_void, (char *)NULL, bcast_proc, NULL);
if ((rpc_stat != RPC_SUCCESS) && (rpc_stat != RPC_TIMEDOUT)) {

fprintf(stderr, "broadcast failed: %s\n",
 clnt_sperrno(rpc_stat));
exit(1);

}
exit(0);

}

The function in Code Example 4-23 collects replies to the broadcast. Normal
operation is to collect either the first reply or all replies. bcast_proc displays
the IP address of the server that has responded. Since the function returns
FALSE it will continue to collect responses, and the RPC client code will
continue to resend the broadcast until it times out.

Code Example 4-23 Collect Broadcast Replies

bool_t
bcast_proc(res, t_addr, nconf)

void *res; /* Nothing comes back */
struct t_bind *t_addr; /* Who sent us the reply */
struct netconfig *nconf;

{
register struct hostent *hp;
char *naddr;

naddr = taddr2naddr(nconf, &taddr->addr);
if (naddr == (char *) NULL) {

120 ONC+ Developer’s Guide—May 1995

4

fprintf(stderr,"Responded: unknown\n");
} else {

fprintf(stderr,"Responded: %s\n", naddr);
free(naddr);

}
return(FALSE);

}

If done is TRUE, then broadcasting stops, and rpc_broadcast() returns
successfully. Otherwise, the routine waits for another response. The request is
rebroadcast after a few seconds of waiting. If no responses come back, the
routine returns with RPC_TIMEDOUT.

Batching

RPC is designed so that clients send a call message and wait for servers to
reply to the call. This implies that a client is blocked while the server processes
the call. This is inefficient when the client does not need each message
acknowledged.

RPC batching lets clients process asynchronously. RPC messages can be placed
in a pipeline of calls to a server. Batching requires that:

• The server does not respond to any intermediate message.
• The pipeline of calls is transported on a reliable transport, such as TCP.
• The result’s XDR routine in the calls must be NULL.
• The RPC call’s time-out must be zero.

Because the server does not respond to each call, the client can send new calls
in parallel with the server processing previous calls. The transport can buffer
many call messages and send them to the server in one write() system call.
This decreases interprocess communication overhead and the total time of a
series of calls. The client should end with a nonbatched call to flush the
pipeline.

Code Example 4-24 shows the unbatched version of the client. It scans the
character array, buf, for delimited strings and sends each string to the server.

Code Example 4-24 Unbatched Client

#include <stdio.h>
#include <rpc/rpc.h>
#include "windows.h"

The Programmer’s Interface to RPC 121

4

main(argc, argv)
int argc;
char **argv;

{
struct timeval total_timeout;
register CLIENT *client;
enum clnt_stat clnt_stat;
char buf[1000], *s = buf;

if ((client = clnt_create(argv[1], WINDOWPROG, WINDOWVERS,
 "circuit_v")) == (CLIENT *) NULL) {

clnt_pcreateerror("clnt_create");
exit(1);

}

total_timeout.tv_sec = 20;
total_timeout.tv_usec = 0;
while (scanf("%s", s) != EOF) {

if (clnt_call(client, RENDERSTRING, xdr_wrapstring, &s,
 xdr_void, (caddr_t) NULL, total_timeout) != RPC_SUCCESS) {

clnt_perror(client, "rpc");
exit(1);

}
}

clnt_destroy(client);
exit(0);

}

Code Example 4-25 shows the batched version of the client. It does not wait
after each string is sent to the server. It waits only for an ending response from
the server.

Code Example 4-25 Batched Client

#include <stdio.h>
#include <rpc/rpc.h>
#include "windows.h"

main(argc, argv)
int argc;
char **argv;

{
struct timeval total_timeout;
register CLIENT *client;
enum clnt_stat clnt_stat;

122 ONC+ Developer’s Guide—May 1995

4

char buf[1000], *s = buf;

if ((client = clnt_create(argv[1], WINDOWPROG, WINDOWVERS,
 "circuit_v")) == (CLIENT *) NULL) {

clnt_pcreateerror("clnt_create");
exit(1);

}
timerclear(&total_timeout);
while (scanf("%s", s) != EOF)

clnt_call(client, RENDERSTRING_BATCHED, xdr_wrapstring,
 &s, xdr_void, (caddr_t) NULL, total_timeout);

/* Now flush the pipeline */
total_timeout.tv_sec = 20;
clnt_stat = clnt_call(client, NULLPROC, xdr_void,
 (caddr_t) NULL, xdr_void, (caddr_t) NULL, total_timeout);
if (clnt_stat != RPC_SUCCESS) {

clnt_perror(client, "rpc");
exit(1);

}
clnt_destroy(client);
exit(0);

}

Code Example 4-26 shows the dispatch portion of the batched server. Because
the server sends no message, the clients are not notified of failures.

Code Example 4-26 Batched Server

#include <stdio.h>
#include <rpc/rpc.h>
#include "windows.h"

void
windowdispatch(rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{
char *s = NULL;

switch(rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, NULL))
fprintf(stderr, "can’t reply to RPC call\n");

return;
case RENDERSTRING:

if (!svc_getargs(transp, xdr_wrapstring, &s)) {

The Programmer’s Interface to RPC 123

4

fprintf(stderr, "can’t decode arguments\n");
/* Tell caller an error occurred */
svcerr_decode(transp);
break;

}
/* Code here to render the string s */
if (!svc_sendreply(transp, xdr_void, (caddr_t) NULL))

fprintf(stderr, "can’t reply to RPC call\n");
break;

case RENDERSTRING_BATCHED:
if (!svc_getargs(transp, xdr_wrapstring, &s)) {

fprintf(stderr, "can’t decode arguments\n");
/* Be silent in the face of protocol errors */
break;

}
/* Code here to render string s, but send no reply! */
break;

default:
svcerr_noproc(transp);
return;

}
/* Now free string allocated while decoding arguments */
svc_freeargs(transp, xdr_wrapstring, &s);

}

Batching Performance

To illustrate the benefits of batching, the examples in Code Example 4-24,
Code Example 4-25, and Code Example 4-26 were completed to render the lines
in a 25144-line file. The rendering service simply throws the lines away. The
batched version of the application was four times as fast as the unbatched
version.

Authentication

In all of the preceding examples in this chapter, the caller has not identified
itself to the server, and the server has not required identification of the caller.
Some network services, such as a network file system, require caller
identification. Refer to System Administration Guide, Volume I, to implement any
of the authentication methods described in this section.

124 ONC+ Developer’s Guide—May 1995

4

Just as different transports can be used when creating RPC clients and servers,
different “flavors” of authentication can be associated with RPC clients. The
authentication subsystem of RPC is open ended. So, many flavors of
authentication can be supported. The authentication protocols are further
defined in Appendix B, “RPC Protocol and Language Specification."

Sun RPC currently supports the authentication flavors shown in Table 4-6.

When a caller creates a new RPC client handle as in:

clnt = clnt_create(host, prognum, versnum, nettype);

the appropriate client-creation routine sets the associated authentication
handle to:

clnt->cl_auth = authnone_create();

If you create a new instance of authentication, you must destroy it with
auth_destroy(clnt->cl_auth). This should be done to conserve memory.

On the server side, the RPC package passes the service-dispatch routine a
request that has an arbitrary authentication style associated with it. The
request handle passed to a service-dispatch routine contains the structure
rq_cred. It is opaque, except for one field: the flavor of the authentication
credentials.

/*
 * Authentication data
 */
struct opaque_auth {

enum_t oa_flavor; /* style of credentials */

Table 4-6 Authentication Methods Supported By Sun RPC

AUTH_NONE Default. No authentication performed

AUTH_SYS An authentication flavor based on UNIX operating system,
process permissions authentication

AUTH_SHORT An alternate flavor of AUTH_SYS used by some servers for
efficiency. Client programs using AUTH_SYS authentication can
receive AUTH_SHORT response verifiers from some servers. See
Appendix B, “RPC Protocol and Language Specification for
details

AUTH_DES An authentication flavor based on DES encryption techniques

AUTH_KERB Version 4 Kerberos authentication based on DES framework

The Programmer’s Interface to RPC 125

4

caddr_t oa_base; /* address of more auth stuff */
u_int oa_length; /* not to exceed MAX_AUTH_BYTES */

};

The RPC package guarantees the following to the service-dispatch routine:

• The rq_cred field in the svc_req structure is well formed. So, you can
check rq_cred.oa_flavor to get the flavor of authentication. You can
also check the other fields of rq_cred if the flavor is not supported by RPC.

• The rq_clntcred field that is passed to service procedures is either NULL
or points to a well-formed structure that corresponds to a supported flavor
of authentication credential. There is no authentication data for the
AUTH_NONE flavor. rq_clntcred can be cast only as a pointer to an
authsys_parms, short_hand_verf, authkerb_cred, or
authdes_cred structure.

AUTH_SYS Authentication

The client can use AUTH_SYS (called AUTH_UNIX in previous releases) style
authentication by setting clnt–>cl_auth after creating the RPC client
handle:

clnt->cl_auth = authsys_create_default();

This causes each RPC call associated with clnt to carry with it the following
credentials-authentication structure shown in Code Example 4-27.

Code Example 4-27 AUTH_SYS Credential Structure

/*
 * AUTH_SYS flavor credentials.
 */
struct authsys_parms {

u_long aup_time; /* credentials creation time */
char *aup_machname; /* client’s host name */
uid_t aup_uid; /* client’s effective uid */
gid_t aup_gid; /* client’s current group id */
u_int aup_len; /* element length of aup_gids*/
gid_t *aup_gids; /* array of groups user is in */

};

rpc.broadcast defaults to AUTH_SYS authentication.

126 ONC+ Developer’s Guide—May 1995

4

Code Example 4-28 shows a server, with procedure RUSERPROC_1, that returns
the number of users on the network. As an example of authentication, it checks
AUTH_SYS credentials and does not service requests from callers whose uid
is 16.

Code Example 4-28 Authentication Server

nuser(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;

{
struct authsys_parms *sys_cred;
uid_t uid;
unsigned long nusers;

/* NULLPROC should never be authenticated */
if (rqstp->rq_proc == NULLPROC) {

if (!svc_sendreply(transp, xdr_void, (caddr_t) NULL))
fprintf(stderr, "can’t reply to RPC call\n");

return;
}

/* now get the uid */
switch(rqstp->rq_cred.oa_flavor) {

case AUTH_SYS:
sys_cred = (struct authsys_parms *) rqstp->rq_clntcred;
uid = sys_cred->aup_uid;
break;

default:
svcerr_weakauth(transp);
return;

}
switch(rqstp->rq_proc) {

case RUSERSPROC_1:
/* make sure caller is allowed to call this proc */
if (uid == 16) {

svcerr_systemerr(transp);

return;
}
/*
 * Code here to compute the number of users and assign it
 * to the variable nusers
 */
if (!svc_sendreply(transp, xdr_u_long, &nusers))

fprintf(stderr, "can’t reply to RPC call\n");

The Programmer’s Interface to RPC 127

4

return;
default:

svcerr_noproc(transp);
return;

}
}

Note the following:

• The authentication parameters associated with the NULLPROC (procedure
number zero) are usually not checked.

• The server calls svcerr_weakauth() if the authentication parameter’s
flavor is too weak; there is no way to get the list of authentication flavors the
server requires.

• The service protocol should return status for access denied; in
Code Example 4-28, the protocol calls the service primitive
svcerr_systemerr(), instead.

The last point underscores the relation between the RPC authentication
package and the services: RPC deals only with authentication and not with an
individual service’s access control. The services themselves must establish
access-control policies and reflect these policies as return statuses in their
protocols.

AUTH_DES Authentication

Use AUTH_DES authentication for programs that require more security than
AUTH_SYS provides. AUTH_SYS authentication is easy to defeat. For example,
instead of using authsys_create_default(), a program can call
authsys_create() and change the RPC authentication handle to give itself
any desired user ID and hostname.

AUTH_DES authentication requires that keyserv() daemons are running on
both the server and client hosts. The NIS or NIS+ naming service must also be
running. Users on these hosts need public/secret key pairs assigned by the
network administrator in the publickey() database. They must also have
decrypted their secret keys with the keylogin() command (normally done by
login() unless the login password and secure-RPC password differ).

To use AUTH_DES authentication, a client must set its authentication handle
appropriately. For example:

128 ONC+ Developer’s Guide—May 1995

4

cl->cl_auth = authdes_seccreate(servername, 60, server,
(char *)NULL);

The first argument is the network name or “netname” of the owner of the
server process. Server processes are usually root processes, and you can get
their netnames with the following call:

char servername[MAXNETNAMELEN];
host2netname(servername, server, (char *)NULL);

servername points to the receiving string and server is the name of the host
the server process is running on. If the server process was run by a non-root
user, use the call user2netname() as follows:

char servername[MAXNETNAMELEN];
user2netname(servername, serveruid(), (char *)NULL);

serveruid() is the user id of the server process. The last argument of both
functions is the name of the domain that contains the server. NULL means “use
the local domain name.”

The second argument of authdes_seccreate() is the lifetime (known also
as the window) of the client’s credential, here, 60 seconds. A credential will
expire 60 seconds after the client makes an RPC call. If a program tries to reuse
the credential, the server RPC subsystem recognizes that it has expired and
does not service the request carrying the expired credential. If any program
tries to reuse a credential within its lifetime, it is rejected, because the server
RPC subsystem saves credentials it has seen in the near past and does not
serve duplicates.

The third argument of authdes_seccreate() is the name of the timehost
used to synchronize clocks. AUTH_DES authentication requires that server and
client agree on the time. The example specifies to synchronize with the server.
A (char *)NULL says not to synchronize. Do this only when you are sure that
the client and server are already synchronized.

The fourth argument of authdes_seccreate() points to a DES encryption
key to encrypt time stamps and data. If this argument is (char *)NULL, as it
is in this example, a random key is chosen. The ah_key field of the
authentication handle contains the key.

The server side is simpler than the client. Code Example 4-29 shows the server
in Code Example 4-28 changed to use AUTH_DES.

The Programmer’s Interface to RPC 129

4

Code Example 4-29 AUTH_DES Server

#include <rpc/rpc.h>
...
...

nuser(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;

{
struct authdes_cred *des_cred;
uid_t uid;
gid_t gid;
int gidlen;
gid_t gidlist[10];

/* NULLPROC should never be authenticated */
if (rqstp->rq_proc == NULLPROC) {

/* same as before */
}
/* now get the uid */
switch(rqstp->rq_cred.oa_flavor) {

case AUTH_DES:
des_cred = (struct authdes_cred *) rqstp->rq_clntcred;
if (! netname2user(des_cred->adc_fullname.name, &uid,
 &gid, &gidlen, gidlist)) {

fprintf(stderr, "unknown user: %s\n",
 des_cred->adc_fullname.name);
svcerr_systemerr(transp);
return;

}
break;

default:
svcerr_weakauth(transp);
return;

}
/* The rest is the same as before */

Note the routine netname2user() converts a network name (or “netname” of
a user) to a local system ID. It also supplies group IDs (not used in this
example).

130 ONC+ Developer’s Guide—May 1995

4

AUTH_KERB Authentication

SunOS 5.x includes support for most client-side features of Kerberos 4.0,
except klogin. AUTH_KERB is conceptually similar to AUTH_DES; the essential
difference is that DES passes a network name and DES-encrypted session key,
while Kerberos passes the encrypted service ticket. The other factors that affect
implementation and interoperability are given in the following subsections.

For more information, see the kerberos(3N)man page and the Steiner-
Neuman-Shiller paper1 on the MIT Project Athena implementation of Kerberos.
You may access MIT documentation through the FTP directory
/pub/kerberos/doc on athena-dist.mit.edu, or through Mosaic, using
the document URL, ftp://athena-dist.mit.edu/pub/kerberos/doc.

Time Synchronization
Kerberos uses the concept of a time window in which its credentials are valid.
It does not place restrictions on the clocks of the client or server. The client is
required to determine the time bias between itself and the server and
compensate for the difference by adjusting the window time specified to the
server. Specifically, the window is passed as an argument to
authkerb_seccreate(); the window does not change. If a timehost is
specified as an argument, the client side gets the time from the timehost and
alters its timestamp by the difference in time. Various methods of time
synchronization are available. See the kerberos_rpc(3N)man page for more
information.

Well-Known Names
Kerberos users are identified by a primary name, instance, and realm. The RPC
authentication code ignores the realm and instance, while the Kerberos library
code does not. The assumption is that user names are the same between client
and server. This enables a server to translate a primary name into user
identification information. Two forms of well-known names are used (omitting
the realm):

• root.host represents a privileged user on client host.

1. Steiner, Jennifer G., Neuman, Clifford, and Schiller, Jeffrey J. “Kerberos: An Authentication Service for Open
Network Systems.” USENIX Conference Proceedings, USENIX Association, Berkeley, CA, June 1988.

The Programmer’s Interface to RPC 131

4

• user.ignored represents the user whose user name is user. The instance is
ignored.

Encryption
Kerberos uses cipher block chaining (CBC) mode when sending a full name
credential (one that includes the ticket and window), and electronic code book
(ECB) mode otherwise. CBC and ECB are two methods of DES encryption. See
the des_crypt(3) man page for more information. The session key is used as
the initial input vector for CBC mode. The notation

xdr_type(object)

means that XDR is used on object as a type. The length in the next code
section is the size, in bytes of the credential or verifier, rounded up to 4-byte
units. The full name credential and verifier are obtained as follows:

xdr_long(timestamp.seconds)
xdr_long(timestamp.useconds)
xdr_long(window)
xdr_long(window - 1)

After encryption with CBC with input vector equal to the session key, the
output is two DES cipher blocks:

CB0
CB1.low
CB1.high

The credential is:

xdr_long(AUTH_KERB)
xdr_long(length)
xdr_enum(AKN_FULLNAME)
xdr_bytes(ticket)
xdr_opaque(CB1.high)

The verifier is:

xdr_long(AUTH_KERB)
xdr_long(length)
xdr_opaque(CB0)
xdr_opaque(CB1.low)

The nickname exchange yields:

xdr_long(timestamp.seconds)
xdr_long(timestamp.useconds)

132 ONC+ Developer’s Guide—May 1995

4

The nickname is encrypted with ECB to obtain ECB0, and the credential is:

xdr_long(AUTH_KERB)
xdr_long(length)
xdr_enum(AKN_NICKNAME)
xdr_opaque(akc_nickname)

The verifier is:

xdr_long(AUTH_KERB)
xdr_long(length)
xdr_opaque(ECB0)
xdr_opaque(0)

Using Port Monitors

RPC servers can be started by port monitors such as inetd and listen. Port
monitors listen for requests and spawn servers in response. The forked server
process is passed file descriptor 0 on which the request has been accepted. For
inetd, when the server is done, it may exit immediately or wait a given
interval for another service request.

For listen, servers should exit immediately after replying because listen
always spawns a new process. The following function call creates a SVCXPRT
handle to be used by the services started by port monitors:

transp = svc_tli_create(0, nconf, (struct t_bind *)NULL, 0, 0)

nconf is the netconfig structure of the transport from which the request is
received.

Because the port monitors have already registered the service with rpcbind,
there is no need for the service to register with rpcbind. But it must call
svc_reg() to register the service procedure:

svc_reg(transp, PROGNUM, VERSNUM, dispatch,(struct netconfig *)NULL)

The netconfig structure here is NULL to prevent svc_reg from registering
the service with rpcbind.

Note – Study rpcgen-generated server stubs to see the sequence in which
these routines are called.

For connection-oriented transports, the following routine provides a lower
level interface:

The Programmer’s Interface to RPC 133

4

transp = svc_fd_create(0, recvsize, sendsize);

A 0 file descriptor is the first argument. You can set the value of recvsize
and sendsize to any appropriate buffer size. A 0 for either argument causes a
system default size to be chosen. Application servers that do not do any
listening of their own use svc_fd_create().

Using inetd

Entries in /etc/inet/inetd.conf have different formats for socket-based,
TLI-based, and RPC services. The format of inetd.conf entries for RPC
services is:

 rpc_prog/vers endpoint_type rpc/proto flags user pathname args

where:

For example:

rquotad/1 tli rpc/udp wait root /usr/lib/nfs/rquotad rquotad

For more information, see the inetd.conf(4) man page.

Using the Listener

Use pmadm to add RPC services:
pmadm -a -p pm_tag -s svctag -i id -v ver \

-m ‘nlsadmin -c command -D -R prog:vers‘

Table 4-7 RPC inetd Services

rpc_prog/vers The name of an RPC program followed by a / and the version
number or a range of version numbers.

endpoint_type One of dgram (for connectionless sockets), stream (for
connection mode sockets), or tli (for TLI endpoints).

proto May be * (for all supported transports), a nettype, a netid, or a
comma separated list of nettype and netid.

flags Either wait or nowait.

user Must exist in the effective passwd database.

pathname Full path name of the server daemon.

args Arguments to be passed to the daemon on invocation.

134 ONC+ Developer’s Guide—May 1995

4

The arguments are: -a means to add a service, -p pm_tag specifies a tag
associated with the port monitor providing access to the service, -s svctag is
the server’s identifying code, -i id is the /etc/passwd user name assigned to
service svctag, -v ver is the version number for the port monitor’s data base
file, and -m specifies the nlsadmin command to invoke the service. nlsadmin
can have additional arguments. For example, to add version 1 of a remote
program server named rusersd, a pmadm command is:
pmadm -a -p tcp -s rusers -i root -v 4 \

-m ‘nlsadmin -c /usr/sbin/rpc.ruserd -D -R 100002:1‘

The command is given root permissions, installed in version 4 of the
listener data base file, and is made available over TCP transports. Because
of the complexity of the arguments and options to pmadm, use a command
script or the menu system to add RPC services. To use the menu system, enter
sysadm ports and choose the port_services option.

After adding a service, the listener must be re-initialized before the service
is available. To do this, stop and restart the listener, as follows (note that
rpcbind must be running):

sacadm -k -p pmtag
sacadm -s -p pmtag

For more information, such as how to set up the listener process, see the
listen(1M), pmadm(1M), sacadm(1M) and sysadm(1M) man pages and the
TCP/IP and Data Communications Guide.

Multiple Server Versions

By convention, the first version number of a program, PROG, is named
PROGVERS_ORIG and the most recent version is named PROGVERS. Program
version numbers must be assigned consecutively. Leaving a gap in the
program version sequence can cause the search algorithm to not find a
matching program version number that is defined.

Version numbers should never be changed by anyone other than the owner of
a program. Adding a version number to a program that you do not own can
cause severe problems when the owner increments the version number. Sun
registers version numbers and answers questions about them (rpc@Sun.com).

The Programmer’s Interface to RPC 135

4

Suppose a new version of the ruser program returns an unsigned short
rather than a long. If you name this version RUSERSVERS_SHORT, a server
that wants to support both versions would do a double register. The same
server handle is used for both registrations.

Code Example 4-30 Server Handle for Two Versions of Single Routine

if (!svc_reg(transp, RUSERSPROG, RUSERSVERS_ORIG, nuser, nconf)) {
fprintf(stderr, "can’t register RUSER service\n");
exit(1);

}
if (!svc_reg(transp, RUSERSPROG, RUSERSVERS_SHORT, nuser, nconf)) {

fprintf(stderr, "can’t register RUSER service\n");
exit(1);

}

Both versions can be performed by a single procedure.

Code Example 4-31 Procedure for Two Versions of Single Routine

void
nuser(rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{
unsigned long nusers;
unsigned short nusers2;
switch(rqstp->rq_proc) {

case NULLPROC:
if (!svc_sendreply(transp, xdr_void, 0))

fprintf(stderr, "can’t reply to RPC call\n");
return;

case RUSERSPROC_NUM:
/*
 * Code here to compute the number of users
 * and assign it to the variable nusers
 */

switch(rqstp->rq_vers) {
case RUSERSVERS_ORIG:

if (! svc_sendreply(transp, xdr_u_long, &nusers))
fprintf(stderr, "can’t reply to RPC call\n");

break;
case RUSERSVERS_SHORT:

nusers2 = nusers;
if (! svc_sendreply(transp, xdr_u_short, &nusers2))

fprintf(stderr, "can’t reply to RPC call\n");

136 ONC+ Developer’s Guide—May 1995

4

break;
}
default:

svcerr_noproc(transp);
return;

}
return;

}

Multiple Client Versions

Since different hosts may run different versions of RPC servers, a client should
be capable of accommodating the variations. For example, one server may run
the old version of RUSERSPROG(RUSERSVERS_ORIG) while another server
runs the newer version (RUSERSVERS_SHORT).

If the version on a server does not match the version number in the client
creation call, clnt_call fails with an RPCPROGVERSMISMATCH error. You
can get the version numbers supported by a server and then create a client
handle with the appropriate version number. Use either the routine in
Code Example 4-32, or clnt_create_vers(). See the rpc(3N)man page for
more details.

Code Example 4-32 RPC Versions on Client Side

main()
{

enum clnt_stat status;
u_short num_s;
u_int num_l;
struct rpc_err rpcerr;
int maxvers, minvers;
CLIENT *clnt;

clnt = clnt_create("remote", RUSERSPROG, RUSERSVERS_SHORT,
 "datagram_v");

if (clnt == (CLIENT *) NULL) {
clnt_pcreateerror("unable to create client handle");
exit(1);

}
to.tv_sec = 10; /* set the time outs */
to.tv_usec = 0;

status = clnt_call(clnt, RUSERSPROC_NUM, xdr_void,

The Programmer’s Interface to RPC 137

4

 (caddr_t) NULL, xdr_u_short, (caddr_t)&num_s, to);
if (status == RPC_SUCCESS) { /* Found latest version number */

printf("num = %d\n", num_s);
exit(0);

}
if (status != RPC_PROGVERSMISMATCH) { /* Some other error */

clnt_perror(clnt, "rusers");
exit(1);

}
/* This version not supported */
clnt_geterr(clnt, &rpcerr);
maxvers = rpcerr.re_vers.high; /*highest version supported */
minvers = rpcerr.re_vers.low; /*lowest version supported */
if (RUSERSVERS_SHORT < minvers || RUSERSVERS_SHORT > maxvers) {

 /* doesn’t meet minimum standards */
clnt_perror(clnt, "version mismatch");
exit(1);

}
(void) clnt_control(clnt, CLSET_VERSION, RUSERSVERS_ORIG);
status = clnt_call(clnt, RUSERSPROC_NUM, xdr_void,

 (caddr_t) NULL, xdr_u_long, (caddr_t)&num_l, to);
if (status == RPC_SUCCESS)

 /* We found a version number we recognize */
printf("num = %d\n", num_l);

else {
clnt_perror(clnt, "rusers");
exit(1);

}
}

Using Transient RPC Program Numbers

Occasionally, it is useful for an application to use RPC program numbers that
are generated dynamically. This could be used for implementing callback
procedures, for example. In the callback example, a client program typically
registers an RPC service using a dynamically generated, or transient, RPC
program number and passes this on to a server along with a request. The
server will then call back the client program using the transient RPC program
number in order to supply the results. Such a mechanism may be necessary if
processing the client’s request will take a huge amount of time and the client
cannot block (assuming it is single-threaded); in this case, the server will
acknowledge the client’s request, and call back later with the results. Another
use of callbacks is to generate periodic reports from a server; the client makes

138 ONC+ Developer’s Guide—May 1995

4

an RPC call to start the reporting, and the server periodically calls back the
client with reports using the transient RPC program number supplied by the
client program.

Dynamically generated, or transient, RPC program numbers are in the
transient range, 0x40000000 - 0x5fffffff. The following routine creates a
service based on a transient RPC program for a given transport type. The
service handle and the transient rpc program number are returned. The caller
supplies the service dispatch routine, the version, and the transport type.

Code Example 4-33 Transient RPC Program—Server Side

SVCXPRT *
register_transient_prog(dispatch, program, version, netid)

void (*dispatch)(); /* service dispatch routine */
u_long *program; /* returned transient RPC number */
u_long version; /* program version */
char *netid; /* transport id */

{
SVCXPRT *transp;
struct netconfig *nconf;
u_long prognum;

if ((nconf = getnetconfigent(netid)) == (struct netconfig *)NULL)
return ((SVCXPRT *)NULL);

if ((transp = svc_tli_create(RPC_ANYFD, nconf,
(struct t_bind *)NULL, 0, 0)) == (SVCXPRT *)NULL) {

freenetconfigent(nconf);
return ((SVCXPRT *)NULL);

}

prognum = 0x40000000;
while (prognum < 0x60000000 && svc_reg(transp, prognum, version,

dispatch, nconf) == 0) {
prognum++;

}

freenetconfigent(nconf);
if (prognum >= 0x60000000) {

svc_destroy(transp);
return ((SVCXPRT *)NULL);

}
*program = prognum;
return (transp);

}

The Programmer’s Interface to RPC 139

4

Multithreaded RPC Programming
This manual does not cover basic topics and code examples for the Solaris
implementation of multithread programming. Instead, refer to the
Multithreaded Programming Guide for background on the following topics:

• Thread creation
• Scheduling
• Synchronization
• Signals
• Process resources
• Light-weight processes (lwp)
• Concurrency
• Data locking strategies

TI-RPC supports multithreaded RPC servers in Solaris 2.4 and higher. The
difference between a multithreaded server and a single-threaded server is that
a multithreaded server uses threading technology to process incoming client
requests concurrently. Multithreaded servers can have higher performance and
availability compared with single-threaded servers.

The section “MT Server Overview” on page 144 is a good place to start reading
about the interfaces available in this release.

MT Client Overview

In a multithread client program, a thread can be created to issue each RPC
request. When multiple threads share the same client handle, only one thread
at a time will be able to make an RPC request. All other threads will wait until
the outstanding request is complete. On the other hand, when multiple threads
make RPC requests using different client handles, the requests are carried out
concurrently. Figure 4-1 illustrates a possible timing of a multithreaded client
implementation consisting of two client threads using different client handles.

Code Example 4-34 shows the client side implementation of a multithreaded
rstat program. The client program creates a thread for each host. Each thread
creates its own client handle and makes various RPC calls to the given host.
Because the client threads are using different handles to make the RPC calls,
they can carry out the RPC calls concurrently.

140 ONC+ Developer’s Guide—May 1995

4

Figure 4-1 Two Client Threads Using Different Client Handles (Real time)

Note – You must link in the thread library when writing any RPC multi-
threaded-safe application. The thread library must be the last named library on
the link line. To do this, specify the -lthread option in the compile command.

Compile the program in Code Example 4-34 by typing:

$ cc rstat.c -lnsl -lthread

Client thread 1

Time

Client thread 2

HOST A

Server Daemon

HOST B

Server Daemon

HOST C

Client 1 thread continues

Client 2 thread continues

Request
completed

Service
executes

Service
executes

Return
answer

Return
answer

Request
completed

Invoke
service

Invoke
service

The Programmer’s Interface to RPC 141

4

Code Example 4-34 Client for MT rstat

/* @(#)rstat.c 2.3 93/11/30 4.0 RPCSRC */
/*
 * Simple program that prints the status of a remote host, in a
 * format similar to that used by the ’w’ command.
 */

#include <thread.h>/* thread interfaces defined */
#include <synch.h>/* mutual exclusion locks defined */
#include <stdio.h>
#include <sys/param.h>
#include <rpc/rpc.h>
#include <rpcsvc/rstat.h>
#include <errno.h>

mutex_t tty; /* control of tty for printf’s */
cond_t cv_finish;
int count = 0;

main(argc, argv)
int argc;
char **argv;
{

int i;
thread_t tid;
void *do_rstat();

if (argc < 2) {
fprintf(stderr, “usage: %s \”host\” [...]\n”, argv[0]);
exit(1);

}

mutex_lock(&tty);

for (i = 1; i < argc; i++) {
if (thr_create(NULL, 0, do_rstat, argv[i], 0, &tid) < 0) {

fprintf(stderr, “thr_create failed: %d\n”, i);
exit(1);

} else
fprintf(stderr, “tid: %d\n”, tid);

}

while (count < argc-1) {
printf(“argc = %d, count = %d\n”, argc-1, count);
cond_wait(&cv_finish, &tty);

142 ONC+ Developer’s Guide—May 1995

4

}

exit(0);
}

bool_t rstatproc_stats();

void *
do_rstat(host)
char *host;
{

CLIENT *rstat_clnt;
statstime host_stat;
bool_t rval;
struct tm *tmp_time;
struct tm host_time;
struct tm host_uptime;
char days_buf[16];
char hours_buf[16];

mutex_lock(&tty);
printf(“%s: starting\n”, host);
mutex_unlock(&tty);

/* client handle to rstat */
rstat_clnt = clnt_create(host, RSTATPROG, RSTATVERS_TIME,

“udp”);
if (rstat_clnt == NULL) {

mutex_lock(&tty); /* get control of tty */
clnt_pcreateerror(host);
count++;
cond_signal(&cv_finish);
mutex_unlock(&tty);/* release control of tty */

thr_exit(0);

}

rval = rstatproc_stats(NULL, &host_stat, rstat_clnt);
if (!rval) {

mutex_lock(&tty);/* get control of tty */
clnt_perror(rstat_clnt, host);
count++;
cond_signal(&cv_finish);
mutex_unlock(&tty);/* release control of tty */

The Programmer’s Interface to RPC 143

4

thr_exit(0);

}

tmp_time = localtime_r(&host_stat.curtime.tv_sec, &host_time);

host_stat.curtime.tv_sec -= host_stat.boottime.tv_sec;

tmp_time = gmtime_r(&host_stat.curtime.tv_sec, &host_uptime);

if (host_uptime.tm_yday != 0)
sprintf(days_buf, “%d day%s, “, host_uptime.tm_yday,
(host_uptime.tm_yday > 1) ? “s” : ““);

else
days_buf[0] = ’\0’;

if (host_uptime.tm_hour != 0)
sprintf(hours_buf, “%2d:%02d,”,

host_uptime.tm_hour, host_uptime.tm_min);

else if (host_uptime.tm_min != 0)
sprintf(hours_buf, “%2d mins,”, host_uptime.tm_min);

else

hours_buf[0] = ’\0’;

mutex_lock(&tty);/* get control of tty */
printf(“%s: “, host);
printf(“ %2d:%02d%cm up %s%s load average: %.2f %.2f %.2f\n”,

(host_time.tm_hour > 12) ? host_time.tm_hour - 12

: host_time.tm_hour,
host_time.tm_min,
(host_time.tm_hour >= 12) ? ’p’
: ’a’,
days_buf,
hours_buf,
(double)host_stat.avenrun[0]/FSCALE,
(double)host_stat.avenrun[1]/FSCALE,
(double)host_stat.avenrun[2]/FSCALE);

count++;
cond_signal(&cv_finish);
mutex_unlock(&tty);/* release control of tty */
clnt_destroy(rstat_clnt);

144 ONC+ Developer’s Guide—May 1995

4

sleep(10);
thr_exit(0);

}

/*
Client side implementation of MT rstat program
*/

/* Default timeout can be changed using clnt_control() */
static struct timeval TIMEOUT = { 25, 0 };

bool_t
rstatproc_stats(argp, clnt_resp, clnt)

void *argp;
statstime *clnt_resp;
CLIENT *clnt;

{

memset((char *)clnt_resp, 0, sizeof (statstime));
if (clnt_call(clnt, RSTATPROC_STATS,

(xdrproc_t) xdr_void, (caddr_t) argp,
(xdrproc_t) xdr_statstime, (caddr_t) clnt_resp,
TIMEOUT) != RPC_SUCCESS) {
return (FALSE);

}
return (TRUE);

}

MT Server Overview

Prior to Solaris 2.4, RPC servers were single threaded. That is, they process
client requests sequentially, as the requests come in. For example, if two
requests come in, and the first takes 30 seconds to process, and the second
takes only 1 second to process, the client that made the second request will still
have to wait for the first request to complete before it receives a response. This
is not desirable, especially in a multiprocessor server environment, where each
CPU could be processing a different request simultaneously; or in a situation
where one request is waiting for I/O to complete, other requests could be
processed by the server.

The Programmer’s Interface to RPC 145

4

Solaris 2.4 and higher provides facilities in the RPC library for service
developers to create multithreaded servers that deliver better performance to
end users. Two modes of server multithreading are supported in TI-RPC: the
Automatic MT mode and the User MT mode.

In the Auto mode, the server automatically creates a new thread for every
incoming client request. This thread processes the request, sends a response,
and exits. In the User mode, the service developer decides how to create and
manage threads for concurrently processing the incoming client requests. The
Auto mode is much easier to use than the User mode, but the User mode offers
more flexibility for service developers with special requirements.

Note – You must link in the thread library when writing RPC multithreaded-
safe applications. The thread library must be the last named library on the link
line. To do this, specify the -lthread option in the compile command.

The two calls that support server multithreading are rpc_control() and
svc_done(). The rpc_control() call is used to set the MT mode, either
Auto or User mode. If the server uses Auto mode, it does not need to invoke
svc_done() at all. In User mode, svc_done() must be invoked after each
client request is processed, so that the server can reclaim the resources from
processing the request. In addition, multithreaded RPC servers must call on
svc_run(). Note that svc_getreqpoll() and svc_getreqset() are
unsafe in MT applications.

Note – If the server program does not invoke any of the MT interface calls, it
remains in single-threaded mode, which is the default mode.

You are required to make RPC server procedures multithreaded safe regardless
of which mode the server is using. Usually, this means that all static and global
variables need to be protected with mutex locks. Mutual exclusion and other
synchronization APIs are defined in synch.h. See the condition(3T),
rwlock(3T), and mutex(3T) man pages for a list of the various
synchronization interfaces.

Figure 4-2 illustrates a possible timing of a server implemented in one of the
MT modes of operation.

146 ONC+ Developer’s Guide—May 1995

4

Figure 4-2 MT RPC Server Timing Diagram

Sharing the Service Transport Handle

The service transport handle, SVCXPRT, contains a single data area for
decoding arguments and encoding results. Therefore, in the default, single-
threaded mode, this structure cannot be freely shared between threads that call
functions that perform these operations. However, when a server is operating
in the MT Auto or User modes, a copy of this structure is passed to the service
dispatch procedure in order to enable concurrent request processing. Under
these circumstances, some routines which would otherwise be unsafe, become
safe. Unless otherwise noted, the server interfaces are generally MT safe. See
the rpc_svc_calls(3N)man page for more details on safety for server-side
interfaces.

Time

Client
program

Client
program

Client
program

continues
Client

program
continues

RPC call

RPC call Create thread

Create thread

HOST BHOST A

Service
daemon

HOST C

Service
executes

Service
executes

Return answer

Return answer

The Programmer’s Interface to RPC 147

4

MT Auto Mode

In the Automatic mode, the RPC library creates and manages threads. The
service developer invokes a new interface call, rpc_control(), to put the
server into MT Auto mode before invoking the svc_run() call. In this mode,
the programmer needs only to ensure that service procedures are MT safe.

rpc_control() allows applications to set and modify global RPC attributes.
At present, it supports only server-side operations. Table 4-8 shows the
rpc_control() operations defined for Auto mode. See also the
rpc_control(3N) man page for additional information.

Note – All of the get operations in Table 4-8, except RPC_SVC_MTMODE_GET,
apply only to the Auto MT mode. If used in MT User mode or the single-
threaded default mode, the results of the operations may be undefined.

By default, the maximum number of threads that the RPC server library creates
at any time is 16. If a server needs to process more than 16 client requests
concurrently, the maximum number of threads must be set to the desired
number. This parameter may be set at any time by the server, and it allows the
service developer to put an upper bound on the thread resources consumed by
the server. Code Example 4-35 is an example RPC program written in MT Auto
mode. In this case, the maximum number of threads is set at 20.

Table 4-8 rpc_control() Library Routines

RPC_SVC_MTMODE_SET Set multithread mode

RPC_SVC_MTMODE_GET Get multithread mode

RPC_SVC_THRMAX_SET Set Maximum number of threads

RPC_SVC_THRMAX_GET Get Maximum number of threads

RPC_SVC_THRTOTAL_GET Total number of threads currently active

RPC_SVC_THRCREATES_GET Cumulative total number of threads created by
the RPC library

RPC_SVC_THRERRORS_GET Number of thr_create errors within RPC library

148 ONC+ Developer’s Guide—May 1995

4

 MT performance is enhanced if the function svc_getargs() is called by
every procedure other than NULLPROCS, even if there are no arguments
(xdr_void may be used in this case). This is true for both the MT Auto and
MT User modes. For more information on this call, see the
rpc_svc_calls(3N)man page.

Code Example 4-35 illustrates the server in MT Auto mode.

Note – You must link in the thread library when writing RPC multithreaded-
safe applications. The thread library must be the last named library on the link
line. To do this, specify the -lthread option in the compile command.

Compile the program in Code Example 4-35 by typing:

$ cc time_svc.c -lnsl -lthread

Code Example 4-35 Server for MT Auto Mode

#include <stdio.h>
#include <rpc/rpc.h>
#include <synch.h>
#include <thread.h>
#include "time_prot.h"

void time_prog();

main(argc, argv)
int argc;
char *argv[];
{

int transpnum;
char *nettype;
int mode = RPC_SVC_MT_AUTO;
int max = 20; /* Set maximum number of threads to 20 */

if (argc > 2) {
fprintf(stderr, "usage: %s [nettype]\n", argv[0]);
exit(1);

}

The Programmer’s Interface to RPC 149

4

if (argc == 2)
nettype = argv[1];

else
nettype = "netpath";

if (!rpc_control(RPC_SVC_MTMODE_SET, &mode)) {
printf("RPC_SVC_MTMODE_SET: failed\n");
exit(1);

}
if (!rpc_control(RPC_SVC_THRMAX_SET, &max)) {

printf("RPC_SVC_THRMAX_SET: failed\n");
exit(1);

}
transpnum = svc_create(time_prog, TIME_PROG, TIME_VERS,

nettype);

if (transpnum == 0) {
fprintf(stderr, "%s: cannot create %s service.\n",
argv[0], nettype);
exit(1);

}

svc_run();
}

/*
 * The server dispatch function.
 * The RPC server library creates a thread which executes
 * the server dispatcher routine time_prog(). After which
 * the RPC library will take care of destroying the thread.
 */

static void
time_prog(rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{

switch (rqstp->rq_proc) {
case NULLPROC:

svc_sendreply(transp, xdr_void, NULL);
return;

case TIME_GET:
dotime(transp);

150 ONC+ Developer’s Guide—May 1995

4

break;
default:

svcerr_noproc(transp);
return;

}

}

dotime(transp)
SVCXPRT *transp;
{

struct timev rslt;
time_t thetime;

thetime = time((time_t *)0);
rslt.second = thetime % 60;
thetime /= 60;
rslt.minute = thetime % 60;
thetime /= 60;
rslt.hour = thetime % 24;
if (!svc_sendreply(transp, xdr_timev,(caddr_t) &rslt)) {

svcerr_systemerr(transp);
}

}

Code Example 4-36 shows the time_prot.h header file for the server.

Code Example 4-36 MT Auto Mode:time_prot.h

include <rpc/types.h>

struct timev {
int second;
int minute;
int hour;

};

typedef struct timev timev;
bool_t xdr_timev();

#define TIME_PROG ((u_long)0x40000001)
#define TIME_VERS ((u_long) 1)
#define TIME_GET ((u_long) 1)

The Programmer’s Interface to RPC 151

4

MT User Mode

In MT User mode, the RPC library will not create any threads. This mode
works, in principle, like the single-threaded, or default mode. The only
difference is that it passes copies of data structures (such as the transport
service handle to the service dispatch routine) to be MT safe.

The RPC server developer takes the responsibility for creating and managing
threads through the thread library. In the dispatch routine, the service
developer can assign the task of procedure execution to newly created or
existing threads. The thr_create() API is used to create threads having
various attributes. All thread library interfaces are defined in thread.h. See
the thr_create(3T) man page for more details.

There is a lot of flexibility available to the service developer in this mode.
Threads can now have different stack sizes based on service requirements.
Threads may be bound. Different procedures may be executed by threads with
different characteristics. The service developer may choose to run some
services single threaded. The service developer may choose to do special
thread-specific signal processing.

As in the Auto mode, the rpc_control() library call is used to turn on User
mode. Note that the rpc_control() operations shown in Table 4-8 on
page 147 (except for RPC_SVC_MTMODE_GET) apply only to MT Auto mode. If
used in MT User mode or the single-threaded default mode, the results of the
operations may be undefined.

Freeing Library Resources in User Mode

In the MT User mode, service procedures must invoke svc_done() before
returning. svc_done() frees resources allocated to service a client request
directed to the specified service transport handle. This function is invoked after
a client request has been serviced, or after an error or abnormal condition that
prevents a reply from being sent. After svc_done() is invoked, the service
transport handle should not be referenced by the service procedure.
Code Example 4-37 shows a server in MT User mode.

Note – svc_done() must only be called within MT User mode. For more
information on this call, see the rpc_svc_calls(3N)man page.

152 ONC+ Developer’s Guide—May 1995

4

Code Example 4-37 MT User Mode: rpc_test.h

#defineSVC2_PROG 0x30000002
#defineSVC2_VERS ((u_long) 1)
#define SVC2_PROC_ADD ((u_long) 1)
#define SVC2_PROC_MULT ((u_long) 2)

struct intpair {
u_shorta;
u_short b;

};

typedef struct intpair intpair;

struct svc2_add_args {
long argument;
SVCXPRT *transp;

};

struct svc2_mult_args {
intpair mult_argument;
SVCXPRT *transp;

};

extern bool_t xdr_intpair();

#define NTHREADS_CONST 500

Code Example 4-38 is the client for MT User mode.

Code Example 4-38 Client for MT User Mode

#define _REENTRANT
#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/uio.h>
#include <netconfig.h>
#include <netdb.h>
#include <rpc/nettype.h>
#include <thread.h>
#include "rpc_test.h"

The Programmer’s Interface to RPC 153

4

void *doclient();
int NTHREADS;

struct thread_info {
thread_t client_id;
int client_status;

};

struct thread_info save_thread[NTHREADS_CONST];

main(argc, argv)
int argc;
char *argv[];

{
int index, ret;
int thread_status;
thread_t departedid, client_id;
char *hosts;
if (argc < 3) {

printf("Usage: do_operation [n] host\n");
printf("\twhere n is the number of threads\n");
exit(1);

} else
if (argc == 3) {

NTHREADS = NTHREADS_CONST;
hosts = argv[1]; /* live_host */

} else {
NTHREADS = atoi(argv[1]);
hosts = argv[2];

}
for (index = 0; index < NTHREADS; index++){

if (ret = thr_create(NULL, NULL, doclient,
(void *) hosts, THR_BOUND, &client_id)){

printf("thr_create failed: return value %d", ret);
printf(" for %dth thread\n", index);
exit(1);

}
save_thread[index].client_id = client_id;

}
for (index = 0; index < NTHREADS; index++){

if (thr_join(save_thread[index].client_id, &departedid,
(void *)
&thread_status)){

printf("thr_join failed for thread %d\n",
save_thread[index].client_id);
exit(1);

}

154 ONC+ Developer’s Guide—May 1995

4

save_thread[index].client_status = thread_status;
}

}
void *doclient(host)
char *host;

{
struct timeval tout;
enum clnt_stat test;
long result = 0;
u_short mult_result = 0;
long add_arg;
long EXP_RSLT;
intpair pair;
CLIENT *clnt;

if ((clnt = clnt_create(host, SVC2_PROG, SVC2_VERS, "udp" ==NULL)
{

clnt_pcreateerror("clnt_create error: ");
thr_exit((void *) -1);

}
tout.tv_sec = 25;
tout.tv_usec = 0;
memset((char *) &result, 0, sizeof (result));
memset((char *) &mult_result, 0, sizeof (mult_result));
if (thr_self() % 2){

EXP_RSLT = thr_self() + 1;
add_arg = thr_self();
test = clnt_call(clnt, SVC2_PROC_ADD, (xdrproc_t) xdr_long,
(caddr_t) &add_arg, (xdrproc_t) xdr_long, (caddr_t) &result,
tout);

} else {
pair.a = (u_short) thr_self();
pair.b = (u_short) 1;
EXP_RSLT = (long) pair.a * pair.b;
test = clnt_call(clnt, SVC2_PROC_MULT, (xdrproc_t)
xdr_intpair,

(caddr_t) &pair, (xdrproc_t) xdr_u_short,
(caddr_t) &mult_result, tout);
result = (long) mult_result;

}
if (test != RPC_SUCCESS) {

printf("THREAD: %d clnt_call hav
thr_exit((void *) -1);

};
thr_exit((void *) 0);

}

The Programmer’s Interface to RPC 155

4

Code Example 4-39 shows the server side in MT User mode. MT performance
is enhanced if the function svc_getargs() is called by every procedure other
than NULLPROC, even if there are no arguments (xdr_void may be used in this
case). This is true for both the MT Auto and MT User modes. For more
information on this call, see the rpc_svc_calls(3N)man page.

Note – You must link in the thread library when writing RPC multithreaded-
safe applications. The thread library must be the last named library on the link
line. To do this, specify the -lthread option in the compile command.

Code Example 4-39 Server for MT User Mode

#define _REENTRANT
#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/uio.h>
#include <signal.h>
#include <thread.h>
#include "operations.h"

SVCXPRT *xprt;
void add_mult_prog();
void *svc2_add_worker();
void *svc2_mult_worker();
main(argc, argv)

int argc;
char **argv;

{
int transpnum;
char *nettype;
int mode = RPC_SVC_MT_USER;

 if(rpc_control(RPC_SVC_MTMODE_SET,&mode) == FALSE){
 printf(" rpc_control is failed to set AUTO mode\n");
 exit(0);
 }

if (argc > 2) {
fprintf(stderr, "usage: %s [nettype]\n", argv[0]);
exit(1);

}
if (argc == 2)

nettype = argv[1];
else

nettype = "netpath";

156 ONC+ Developer’s Guide—May 1995

4

transpnum = svc_create(add_mult_prog, SVC2_PROG,
SVC2_VERS, nettype);

if (transpnum == 0) {
fprintf(stderr, "%s: cannot create %s service.\n", argv[0],
nettype);
exit(1);

}
svc_run();

}
void add_mult_prog (rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{
long argument;
u_short mult_arg();
intpair mult_argument;
bool_t (*xdr_argument)();
struct svc2_mult_args *sw_mult_data;
struct svc2_add_args *sw_add_data;
int ret;
thread_t worker_id;
switch ((long) rqstp->rq_proc){

case NULLPROC:

svc_sendreply(transp, xdr_void, (char *) 0);
svc_done(transp);
break;

case SVC2_PROC_ADD:

xdr_argument = xdr_long;

(void) memset((char *) &argument, 0, sizeof (argument));
if (!svc_getargs(transp, xdr_argument,
(char *) &argument)){

printf("problem with getargs\n");
svcerr_decode(transp);
exit(1);

}

sw_add_data = (struct svc2_add_args *)
malloc(sizeof (struct svc2_add_args));
sw_add_data->transp = transp;
sw_add_data->argument = argument;

if (ret = thr_create(NULL, THR_MIN_STACK + 16 * 1024,
svc2_add_worker, (void *) sw_add_data, THR_DETACHED,

printf("SERVER: thr_create failed:");
printf(" return value %d", ret);

The Programmer’s Interface to RPC 157

4

printf(" for add thread\n");
exit(1);

}
break;

case SVC2_PROC_MULT:

xdr_argument = xdr_intpair;

(void) memset((char *) &mult_argument, 0,
sizeof (mult_argument));
if (!svc_getargs(transp, xdr_argument,
(char *) &mult_argument)){

printf("problem with getargs\n");
svcerr_decode(transp);
exit(1);

}
sw_mult_data = (struct svc2_mult_args *)
malloc(sizeof (struct svc2_mult_args));
sw_mult_data->transp = transp;
sw_mult_data->mult_argument.a = mult_argument.a;
sw_mult_data->mult_argument.b = mult_argument.b;

if (ret = thr_create(NULL, THR_MIN_STACK + 16 * 1024,
svc2_mult_worker, (void *) sw_mult_data, THR_DETACHED,
&worker_id)){

printf("SERVER: thr_create failed:");
printf("return value %d", ret);
printf("for multiply thread\n");
exit(1);

break;
default:

svcerr_noproc(transp);
svc_done(transp);
break;

}
}

u_short mult_arg();
long add_one();
void *svc2_add_worker(add_arg)
struct svc2_add_args *add_arg;
{

158 ONC+ Developer’s Guide—May 1995

4

long *result;
bool_t (*xdr_result)();
xdr_result = xdr_long;
result = (long *) malloc(sizeof (long));
*result = add_one(add_arg->argument);
if (!svc_sendreply(add_arg->transp, xdr_result,
(caddr_t) result)){

printf("sendreply failed\n");
svcerr_systemerr(add_arg->transp);
svc_done(add_arg->transp);
thr_exit((void *) -1);

}
svc_done(add_arg->transp);
thr_exit((void *) 0);

}
void *svc2_mult_worker(m_arg)
struct svc2_mult_args *m_arg;
{

u_short *result;
bool_t (*xdr_result)();
xdr_result = xdr_u_short;
result = (u_short *) malloc(sizeof (u_short));
*result = mult_arg(&m_arg->mult_argument);
if (!svc_sendreply(m_arg->transp, xdr_result,
(caddr_t) result)){

printf("sendreply failed\n");
svcerr_systemerr(m_arg->transp);
svc_done(m_arg->transp);
thr_exit((void *) -1);

}
svc_done(m_arg->transp);
thr_exit((void *) 0);

}
u_short mult_arg(pair)

intpair *pair;
{

u_short result;

result = pair->a * pair->b;
return (result);}

long add_one(arg)
long arg;

{
return (++arg);

}

The Programmer’s Interface to RPC 159

4

Connection-Oriented Transports
Code Example 4-40 copies a file from one host to another. The RPC send call
reads standard input and sends the data to the server receive, which writes
the data to standard output. This also illustrates an XDR procedure that
behaves differently on serialization and on deserialization. A connection-
oriented transport is used.

Code Example 4-40 Remote Copy (Two-Way XDR Routine)

/*
 * The xdr routine:
 * on decode, read wire, write to fp
 * on encode, read fp, write to wire
 */
#include <stdio.h>
#include <rpc/rpc.h>

bool_t
xdr_rcp(xdrs, fp)

XDR *xdrs;
FILE *fp;

{
unsigned long size;
char buf[BUFSIZ], *p;

if (xdrs->x_op == XDR_FREE) /* nothing to free */
return(TRUE);

while (TRUE) {
if (xdrs->x_op == XDR_ENCODE) {

if ((size = fread(buf, sizeof(char), BUFSIZ, fp))
 == 0 && ferror(fp)) {
fprintf(stderr, "can’t fread\n");
return(FALSE);

} else
return(TRUE);

}
p = buf;
if (! xdr_bytes(xdrs, &p, &size, BUFSIZ))

return(0);
if (size == 0)

return(1);
if (xdrs->x_op == XDR_DECODE) {

if (fwrite(buf, sizeof(char), size, fp) != size) {
fprintf(stderr, "can’t fwrite\n");

160 ONC+ Developer’s Guide—May 1995

4

return(FALSE);
} else

return(TRUE);
}

}
}

In Code Example 4-41 and Code Example 4-42, the serializing and deserializing
are done only by the xdr_rcp()routine shown in Code Example 4-40.

Code Example 4-41 Remote Copy Client Routines

/* The sender routines */
#include <stdio.h>
#include <netdb.h>
#include <rpc/rpc.h>
#include <sys/socket.h>
#include <sys/time.h>
#include "rcp.h"

main(argc, argv)
int argc;
char **argv;

{
int xdr_rcp();

if (argc != 2 7) {
fprintf(stderr, "usage: %s servername\n", argv[0]);
exit(1);

}
if(callcots(argv[1], RCPPROG, RCPPROC, RCPVERS, xdr_rcp, stdin,

 xdr_void, 0) != 0)
exit(1);

exit(0);
}

callcots(host, prognum, procnum, versnum, inproc, in, outproc, out)
char *host, *in, *out;
xdrproc_t inproc, outproc;

{
enum clnt_stat clnt_stat;
register CLIENT *client;
struct timeval total_timeout;

if ((client = clnt_create(host, prognum, versnum, "circuit_v")
 == (CLIENT *) NULL)) {

The Programmer’s Interface to RPC 161

4

clnt_pcreateerror("clnt_create");
return(-1);

}
total_timeout.tv_sec = 20;
total_timeout.tv_usec = 0;
clnt_stat = clnt_call(client, procnum, inproc, in, outproc, out,
 total_timeout);
clnt_destroy(client);
if (clnt_stat != RPC_SUCCESS)

clnt_perror("callcots");
return((int)clnt_stat);

}

The receiving routines are defined in Code Example 4-42. Note that in the
server, xdr_rcp()did all the work automatically.

Code Example 4-42 Remote Copy Server Routines

/*
 * The receiving routines
 */
#include <stdio.h>
#include <rpc/rpc.h
#include "rcp.h"

main()
{

void rcp_service();
if (svc_create(rpc_service,RCPPROG,RCPVERS,"circuit_v") == 0) {

fprintf(stderr, "svc_create: errpr\n");
exit(1);

}
svc_run(); /* never returns */
fprintf(stderr, "svc_run should never return\n");

}

void
rcp_service(rqstp, transp)

register struct svc_req *rqstp;
register SVCXPRT *transp;

{
switch(rqstp->rq_proc) {

case NULLPROC:
if (svc_sendreply(transp, xdr_void, (caddr_t) NULL) ==

FALSE)
fprintf(stderr, "err: rcp_service");

162 ONC+ Developer’s Guide—May 1995

4

return;
case RCPPROC:

if (!svc_getargs(transp, xdr_rcp, stdout)) {
svcerr_decode(transp);
return();

}
if(!svc_sendreply(transp, xdr_void, (caddr_t) NULL)) {

fprintf(stderr, "can’t reply\n");
return();

}
return();

default:
svcerr_noproc(transp);
return();

}
}

Memory Allocation With XDR
XDR routines normally serialize and deserialize data. XDR routines often
automatically allocate memory and free automatically allocated memory. The
convention is to use a NULL pointer to an array or structure to indicate that an
XDR function must allocate memory when deserializing. The next example,
xdr_chararr1(), processes a fixed array of bytes with length SIZE and
cannot allocate memory if needed:

xdr_chararr1(xdrsp, chararr)
XDR *xdrsp;
char chararr[];

{
char *p;
int len;

p = chararr;
len = SIZE;
return (xdr_bytes(xdrsp, &p, &len, SIZE));

}

If space has already been allocated in chararr, it can be called from a server
like this:

char chararr[SIZE];
svc_getargs(transp, xdr_chararr1, chararr);

The Programmer’s Interface to RPC 163

4

Any structure through which data is passed to XDR or RPC routines must be
allocated so that its base address is at an architecture-dependent boundary. An
XDR routine that does the allocation must be written so that it can:

• Allocate memory when a caller requests
• Return the pointer to any memory it allocates

In the following example, the second argument is a NULL pointer, meaning that
memory should be allocated to hold the data being deserialized.

xdr_chararr2(xdrsp, chararrp)
XDR *xdrsp;
char **chararrp;

{
int len;

len = SIZE;
return (xdr_bytes(xdrsp, charrarrp, &len, SIZE));

}

The corresponding RPC call is:

char *arrptr;
arrptr = NULL;
svc_getargs(transp, xdr_chararr2, &arrptr);
/*
 * Use the result here
 */
svc_freeargs(transp, xdr_chararr2, &arrptr);

After use, the character array should be freed through svc_freeargs().
svc_freeargs() does nothing if passed a NULL pointer as its second
argument.

To summarize:

• An XDR routine normally serializes, deserializes, and frees memory.
• svc_getargs() calls the XDR routine to deserialize.
• svc_freeargs() calls the XDR routine to free memory.

164 ONC+ Developer’s Guide—May 1995

4

Porting From TS-RPC to TI-RPC
The transport-independent RPC (TI-RPC) routines allow the developer
stratified levels of access to the transport layer. The highest-level routines
provide complete abstraction from the transport and provide true transport-
independence. Lower levels provide access levels similar to the TI-RPC of
previous releases.

This section is an informal guide to porting transport-specific RPC (TS-RPC)
applications to TI-RPC. Table 4-9 shows the differences between selected
routines and their counterparts. For information on porting issues concerning
sockets and transport layer interface (TLI), see the Transport Interfaces
Programming Guide.

Porting an Application

An application based on either TCP or UDP can run in binary-compatibility
mode. For some applications you only recompile and relink all source files.
This may be true of applications that use simple RPC calls and use no socket or
TCP or UDP specifics.

Some editing and new code may be needed if an application depends on socket
semantics or features specific to TCP or UDP. Examples use the format of host
addresses or rely on the Berkeley UNIX concept of privileged ports.

Applications that are dependent on the internals of the library or the socket
implementation, or depend on specific transport addressing probably require
more effort to port and may require substantial modification.

Benefits of Porting

Some of the benefits of porting are:

• Applications transport independence means they operate over more
transports than before.

• Use of new interfaces make your application more efficient.
• Binary compatibility is less efficient than native mode.
• Old interfaces could removed from future releases.

The Programmer’s Interface to RPC 165

4

Porting Issues

libnsl Library
libc no longer includes networking functions. libnsl must be explicitly
specified at compile time to link the network services routines.

Old Interfaces
Many old interfaces are supported in the libnsl library, but they work only
with TCP or UDP transports. To take advantage of new transports, you must
use the new interfaces.

Name-to-Address Mapping
Transport independence requires opaque addressing. This has implications for
applications that interpret addresses.

166 ONC+ Developer’s Guide—May 1995

4

Differences Between TI-RPC and TS-RPC

The major differences between transport-independent RPC and transport-
specific RPC are illustrated in Table 4-9. Also see section “Comparison
Examples” on page 170 for code examples comparing TS-RPC with TI-RPC.

Table 4-9 Differences Between TI-RPC and TS-RPC

Category TI-RPC TS- RPC

Default Transport Selection TI-RPC uses the TLI interface. TS-RPC uses the socket interface.
RPC Address Binding TI-RPC uses rpcbind for service

binding. rpcbind keeps address in
universal address format.

TS-RPC uses portmap for service
binding.

Transport Information Transport information is kept in a local
file, /etc/netconfig. Any transport
identified in netconfig is accessible.

Only TCP and UDP transports are
supported.

Loopback Transports rpcbind service requires a secure
loopback transport for server
registration

TS-RPC services do not require a
loopback transport.

Host Name Resolution The order of host name resolution in
TI-RPC depends on the order of
dynamic libraries identified by entries
in /etc/netconfig.

Host name resolution is done by name
services. The order is set by the state of
the hosts database.

File Descriptors Descriptors are assumed to be TLI
endpoints.

Descriptors are assumed to be sockets.

rpcgen The TI-RPC rpcgen tool adds support
for multiple arguments, pass-by values,
sample client files, and sample server
files.

rpcgen in SunOS 4.1 and previous
releases do not support the features
listed for TI-RPC rpcgen.

Libraries TI-RPC requires that applications be
linked to the libnsl library.

All TS-RPC functionality is provided in
libc.

MT Support Multithreaded RPC clients and servers
are supported.

Multithreaded RPC is not supported.

The Programmer’s Interface to RPC 167

4

Function Compatibility Lists

The RPC library functions are listed in this section and grouped into functional
areas. Each section includes lists of functions that are unchanged, have added
functionality, and are new relative to previous releases.

Note – Functions marked with an asterisk are retained for ease of porting and
may be not be supported in future releases of Solaris.

Creating Client Handles

The following functions are unchanged from the previous release and available
in the current SunOS release:

clnt_destroy
clnt_pcreateerror
*clntraw_create
clnt_spcreateerror
*clnttcp_create
*clntudp_bufcreate
*clntudp_create
clnt_control
clnt_create
clnt_create_timed
clnt_create_vers
clnt_dg_create
clnt_raw_create
clnt_tli_create
clnt_tp_create
clnt_tp_create_timed
clnt_vc_create

Creating and Destroying Services

The following functions are unchanged from the previous releases and
available in the current SunOS release:

svc_destroy
svcfd_create
*svc_raw_create
*svc_tp_create
*svcudp_create
*svc_udp_bufcreate

168 ONC+ Developer’s Guide—May 1995

4

svc_create
svc_dg_create
svc_fd_create
svc_raw_create
svc_tli_create
svc_tp_create
svc_vc_create

Registering and Unregistering Services

The following functions are unchanged from the previous releases and
available in the current SunOS release:

*registerrpc
*svc_register
*svc_unregister
xprt_register
xprt_unregister
rpc_reg
svc_reg
svc_unreg

SunOS 4.x Compatibility Calls

The following functions are unchanged from previous releases and available in
the current SunOS release:

*callrpc
clnt_call
*svc_getcaller - works only with IP-based transports

rpc_call
svc_getrpccaller

Broadcasting

The following call has the same functionality as in previous releases, although
it is supported for backward compatibility only:

*clnt_broadcast

clnt_broadcast can broadcast only to the portmap service. It does not
support rpcbind.

The Programmer’s Interface to RPC 169

4

The following function that broadcasts to both portmap and rpcbind is also
available in the current release of SunOS:

rpc_broadcast

Address Management Functions

The TI-RPC library functions interface with either portmap or rpcbind. Since
the services of the programs differ, there are two sets of functions, one for each
service.

The following functions work with portmap:

pmap_set
pmap_unset
pmap_getport
pmap_getmaps
pmap_rmtcall

The following functions work with rpcbind:

rpcb_set
rpcb_unset
rpcb_getaddr
rpcb_getmaps
rpcb_rmtcall

Authentication Functions

The following calls have the same functionality as in previous releases. They
are supported for backward compatibility only:

authdes_create
authunix_create
authunix_create_default
authdes_seccreate
authsys_create
authsys_create_default

Other Functions

rpcbind provides a time service (primarily for use by secure RPC client-
server time synchronization), available through the rpcb_gettime function.
pmap_getport and rpcb_getaddr can be used to get the port number of a

170 ONC+ Developer’s Guide—May 1995

4

registered service. rpcb_getaddr communicates with any server running
version 2, 3, or 4 of rcpbind. pmap_getport can only communicate with
version 2.

Comparison Examples

The changes in client creation from TS-RPC to TI-RPC are illustrated in
Code Example 4-43 and Code Example 4-44. Each example

• Creates a UDP descriptor.
• Contacts the remote host’s RPC binding process to get the services address.
• Binds the remote service’s address to the descriptor.
• Creates the client handle and set its time out.

Code Example 4-43 Client Creation in TS-RPC

struct hostent *h;
struct sockaddr_in sin;
int sock = RPC_ANYSOCK;
u_short port;
struct timeval wait;

if ((h = gethostbyname("host")) == (struct hostent *) NULL) {
syslog(LOG_ERR, "gethostbyname failed");
exit(1);

}
sin.sin_addr.s_addr = *(u_long *) hp->h_addr;
if ((port = pmap_getport(&sin, PROGRAM, VERSION, "udp")) == 0) {

syslog (LOG_ERR, "pmap_getport failed");
exit(1);

} else
sin.sin_port = htons(port);

wait.tv_sec = 25;
wait.tv_usec = 0;
clntudp_create(&sin, PROGRAM, VERSION, wait, &sock);

The TI-RPC version assumes that the UDP transport has the netid udp. A
netid is not necessarily a well-known name.

Code Example 4-44 Client Creation in TI-RPC

struct netconfig *nconf;
struct netconfig *getnetconfigent();
struct t_bind *tbind;
struct timeval wait;

The Programmer’s Interface to RPC 171

4

nconf = getnetconfigent("udp");
if (nconf == (struct netconfig *) NULL) {

syslog(LOG_ERR, "getnetconfigent for udp failed");
exit(1);

}
fd = t_open(nconf->nc_device, O_RDWR, (struct t_info *) NULL);
if (fd == -1) {

syslog(LOG_ERR, "t_open failed");
exit(1);

}
tbind = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR);
if (tbind == (struct t_bind *) NULL) {

syslog(LOG_ERR, "t_bind failed");
exit(1);

}
if (rpcb_getaddr(PROGRAM, VERSION, nconf, &tbind->addr, "host")

 == FALSE) {
syslog(LOG_ERR, "rpcb_getaddr failed");
exit(1);

}
cl = clnt_tli_create(fd, nconf, &tbind->addr, PROGRAM, VERSION,
 0, 0);
(void) t_free((char *) tbind, T_BIND);
if (cl == (CLIENT *) NULL) {

syslog(LOG_ERR, "clnt_tli_create failed");
exit(1);

}
wait.tv_sec = 25;
wait.tv_usec = 0;
clnt_control(cl, CLSET_TIMEOUT, (char *) &wait);

Code Example 4-45 and Code Example 4-46 show the differences between
broadcast in TS-RPC and TI-RPC. The older clnt_broadcast is similar to the
newer rpc_broadcast. The primary difference is in the collectnames()
function: deletes duplicate addresses and displays the names of hosts that
reply to the broadcast.

Code Example 4-45 Broadcast in TS-RPC

statstime sw;
extern int collectnames();

clnt_broadcast(RSTATPROG, RSTATVERS_TIME, RSTATPROC_STATS,
xdr_void, NULL, xdr_statstime, &sw, collectnames);
...

172 ONC+ Developer’s Guide—May 1995

4

collectnames(resultsp, raddrp)
char *resultsp;
struct sockaddr_in *raddrp;

{
u_long addr;
struct entry *entryp, *lim;
struct hostent *hp;
extern int curentry;

/* weed out duplicates */
addr = raddrp->sin_addr.s_addr;
lim = entry + curentry;
for (entryp = entry; entryp < lim; entryp++)

if (addr == entryp->addr)
return (0);

...
/* print the host’s name (if possible) or address */
hp = gethostbyaddr(&raddrp->sin_addr.s_addr, sizeof(u_long),
 AF_INET);
if(hp == (struct hostent *) NULL)

printf("0x%x", addr);
else

printf("%s", hp->h_name);
}

Code Example 4-46 shows the Broadcast for TI-RPC:

Code Example 4-46 Broadcast in TI-RPC

statstime sw;
extern int collectnames();

rpc_broadcast(RSTATPROG, RSTATVERS_TIME, RSTATPROC_STATS,
 xdr_void, NULL, xdr_statstime, &sw, collectnames, (char *) 0);

...

collectnames(resultsp, taddr, nconf)
char *resultsp;
struct t_bind *taddr;
struct netconfig *nconf;

{
struct entry *entryp, *lim;
struct nd_hostservlist *hs;
extern int curentry;
extern int netbufeq();

The Programmer’s Interface to RPC 173

4

/* weed out duplicates */
lim = entry + curentry;
for (entryp = entry; entryp < lim; entryp++)

if (netbufeq(&taddr->addr, entryp->addr))
return (0);

...
/* print the host’s name (if possible) or address */
if (netdir_getbyaddr(nconf, &hs, &taddr->addr) == ND_OK)

printf("%s", hs->h_hostservs->h_host);
else {

char *uaddr = taddr2uaddr(nconf, &taddr->addr);
if (uaddr) {

printf("%s\n", uaddr);
(void) free(uaddr);

} else
printf("unknown");

}
}

netbufeq(a, b)
struct netbuf *a, *b;

{
return(a->len == b->len && !memcmp(a->buf, b->buf, a->len));

}

174 ONC+ Developer’s Guide—May 1995

4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

