OTS
Sistema de Seguimiento de Objetos
[image: image6.wmf]SICO

simulación, control y software

software

Autor : Guillermo González Páez
Versión : 1.0
Fecha de creación: 20/09/2004
Fecha de modificación : 29/09/2004
CONTROL DE VERSIONES

	Versión
	Fecha
	Descripción

	1.0
	20/09/2004
	Primera versión del documento

	
	
	

TABLA DE CONTENIDOS

11.
INTRODUCCIÓN

11.1.
Propósito del documento

11.2.
Definición del sistema

11.3.
Acrónimos

11.4.
Referencias

22.
DISEÑO DEL SISTEMA

22.1.
Visión General

32.2.
Diagrama de Procesos

53.
IMPLEMENTACIÓN DEL SISTEMA

53.1.
Programación

63.2.
Arquitectura

83.3.
Comunicación

93.4.
Estructuras de datos

93.4.1.
Subsistema de CTC (ctc.x)

103.4.2.
Subsistema de Balizas (balizas.x)

103.4.3.
Subsistema TETRA (tetra.x)

113.4.4.
Sistema OTS (ots.x)

123.5.
Base de Datos

133.6.
Interfaz Gráfico

143.7.
Generación de Código

153.8.
Archivos ejecutables

164.
EJECUCIÓN DEL SISTEMA

164.1.
Generación de la base de datos estática

174.2.
Ejecución de MIND en un único proceso

174.3.
Ejecución de MIND en múltiples procesos

184.4.
Ejecución del visualizador VIDI

195.
FUNCIONAMIENTO DEL SISTEMA

195.1.
Subsistema de CTC

195.2.
Subsistema de Balizas

195.3.
Subsistema TETRA

206.
ANEXOS

206.1.
Sistema de CTC

216.2.
Sistema de Balizas

226.3.
Sistema TETRA

237.
ÍNDICE DE FIGURAS

1. INTRODUCCIÓN

1.1. Propósito del documento

Este documento pretende describir el sistema OTS, Sistema de Seguimiento de Objetos, sus relaciones con otros sistemas de los cuales toma información y su funcionalidad y aplicaciones posibles.
1.2. Definición del sistema

OTS es la denominación de un conjunto de módulos software que permiten obtener, integrar y explotar la información proveniente de diferentes tipos de sistemas de control y seguimiento del material móvil de la red de Metro de Madrid.
1.3. Acrónimos

· CTC: Control de Tráfico Centralizado

· ISSI: Individual Short Subscriber Identity (Identificador de equipo TETRA)

· EBTS: Enhanced Base Transceiver System (Base de radio TETRA)

· MIND: Módulo de INformación de Dispositivos (Programa ejecutable del sistema OTS)
· OTS: Object Tracker System (Sistema de Seguimiento de Objetos)

· SDM: Servidor de Datos Móviles (Equipo en el que se ejecuta el OTS)
· SDR: Short Data Router (Servidor de mensajes cortos de TETRA)

· SIP: Sistema de Información Positiva (Proveedor de eventos de Balizas)

· TETRA: TErrestrial Trunked RAdio (Sistema de transmisión digital de voz y datos vía radio)
· VIDI: VIsualizador De Información (Interfaz gráfico para el OTS)
· XDR: External Data Representation

1.4. Referencias

· Sistema de Información al Viajero (SIV)

· Gestor Tren-Tierra: Sistema que controla y supervisa la comunicación WiFi entre los subsistemas embarcados en el Tren y el Puesto Central (La empresa encargada de este sistema es Infoglobal).

2. DISEÑO DEL SISTEMA
2.1. Visión General

OTS es un sistema diseñado para obtener una visión completa, unificada y consolidada de todas las características del material móvil que circula en la red de Metro de Madrid, en tiempo real, a medida que los trenes van circulando.

Para ello, el sistema se comunica con otros sistemas de los cuales obtiene diversos tipos de información, que son integrados y unificados en el módulo central del sistema, el MIND, para obtener una visión única y completa del movimiento y las características del material móvil.
Los sistemas con los que se comunica el OTS son:
· CTC (serv_siv): Aporta información sobre los circuitos de vía por los que va circulando cada tren. La empresa encargada de este sistema es SICO.
· Datos TETRA (SDR): Aporta información de la línea por la que está circulando el tren y la chapa que tiene en cada momento. La empresa encargada de este sistema es Amper.
· Audio TETRA (AudioServer): Aporta información de localización del tren (estaciones por las que circula), así como notificaciones o alarmas producidas en el tren. La empresa encargada de este sistema es Fedetec.
· Balizas (SIP): Aporta información de la composición del tren (matrículas de los coches que componen el tren) y de su sentido de movimiento. La empresa encargada de este sistema es Mondragón.
A partir de la información recogida por el OTS es posible visualizar el movimiento de los trenes en tiempo real e interactuar con ellos, enviarles mensajes, ordenes o cambiar algunas de sus características también en tiempo real.

[image: image1]
Figura 2.1 : Visión General del OTS
2.2. Diagrama de Procesos
El OTS se compone de un conjunto de procesos software, basados en arquitectura cliente-servidor que se comunican a través de una conexión de red TCP/IP, entre ellos y con diversos subsistemas.
Entre los procesos principales del OTS, existen una serie de procesos que actúan como interfaces de comunicación con los subsistemas a través de los cuales se obtiene información. Esa información es tratada e integrada en una base de datos local por el módulo central del sistema, denominado MIND, que permite obtener información de la base de datos e interactuar con los demás procesos para realizar distintas acciones.
Además existe un subsistema especial, el VIDI, que permite, comunicándose con los procesos del OTS, visualizar gráficamente el movimiento de los trenes por la línea en tiempo real y obtener información de sus características.

Todos los procesos del OTS se ejecutan en un equipo denominado Servidor de Datos Móviles (SDM), aunque es posible deslocalizar los procesos para que se ejecuten en distintas máquinas. El VIDI generalmente se ejecutará en una máquina distinta al OTS.
En la siguiente figura se representan los distintos subsistemas (elipses) y procesos (círculos) implicados en el OTS. Los procesos encuadrados en el marco azul turquesa, son los procesos principales del sistema OTS. Las flechas indican la dirección en la que se transmiten los datos entre los diferentes subsistemas y procesos.

[image: image2]
Figura 2.2 : Diagrama de Procesos del OTS
Los procesos principales del OTS son:

· mind-ctc2ots: Proporciona el interfaz de comunicación entre el CTC y el OTS, transformando los eventos que recibe del CTC a eventos del OTS, entendidos por MIND. Está programado como un cliente que se conecta al CTC y reintenta automáticamente las conexiones con él, en caso de fallo.

· mind-tetra2ots: Proporciona el interfaz de comunicación entre el subsistema TETRA y el OTS, transformando los eventos que recibe de TETRA (implementado en el servidor tetra) a eventos del OTS, entendidos por MIND. Está programado como un cliente que se conecta al servidor tetra y reintenta automáticamente las conexiones con él, en caso de fallo.
· mind-balizas2ots: Proporciona el interfaz de comunicación entre el subsistema de Balizas y el OTS, transformando los eventos que recibe de las Balizas a eventos del OTS, entendidos por MIND. Está programado como un servidor pasivo que espera la conexión del proveedor de eventos de Balizas.
· mind-hub: Proporciona mecanismos para difundir eventos del OTS. Puede emplearse para conectar varios MIND de forma jerárquica, o para replicar la base de datos del OTS en otros ordenadores.
3. IMPLEMENTACIÓN DEL SISTEMA

3.1. Programación

El OTS está programado en lenguaje C bajo UNIX y está basado en el modelo de objetos de GTK (aunque no lo utiliza). Utiliza las librerías GLib y XDR además de una base de datos Berkeley DB.
GLib es una librería base de bajo nivel. Sirve para proporcionar el manejo de estructuras de datos para C, envoltorios de portabilidad e interfaces para funcionalidades en tiempo de ejecución tales como bucles de eventos, hilos, carga dinámica y un sistema de objetos.
XDR es una librería para la descripción y codificación de estructuras de datos siguiendo un estándar. Permite transferir datos entre dos procesos que pueden estar ejecutándose en ordenadores de distintas arquitecturas. XDR es un subconjunto de las SunRPC.
Berkeley BD es un sistema de gestión de bases de datos relacionales, que dispone de librerías para integrarse fácilmente en una aplicación. Las consultas a la base de datos no se realizan a través de sentencias SQL, sino que se realizan a través de llamadas a funciones de librería.
3.2. Arquitectura
Con objeto de reducir el acoplamiento, facilitar el mantenimiento y desarrollo de nuevos módulos y aumentar la verificabilidad del sistema, se ha optado por una arquitectura cliente-servidor modular descrita en el diagrama de la figura siguiente:
[image: image3.png]- 2 3
HE I A A E
slelslelS 5|l E
2e|S|8|2|288|2
° 2|5 (°|s 2|5

o Q
i e ver-pecketizen | 2 28| o]s|a| oo
S[2| emveoper |Z1E|S|S[8|2|3 -
58 El5|EE|olElE| =
aé S [packetizer | HE LT
H REier (e

glib Berkeley DB

Figura 3.1 : Arquitectura del OTS
Probablemente la mejor manera de conocer como está implementado el sistema consiste en navegar a través de la documentación de cada módulo empezando desde las capas inferiores hacia las superiores (Enlace a la documentación). Se ha intentado en todo momento minimizar el acoplo entre los diferentes módulos para que se pueda comprender partes del sistema de forma aislada.

· Dependencia de GTK/Gnome

· ui-glade : Módulo de E/S mediante formularios Glade. Este módulo proporciona funciones genéricas para manipular el contenido de formularios Glade sin necesidad de añadir nuevo código si se siguen ciertos convenios de nombrado de los widgets en Glade.
· Módulos Genéricos

· visitor : Patrón visitante para estructuras arbitrarias. Este módulo proporciona las estructuras y funciones necesarias para implementar el patrón visitante con estructuras C. Se puede utilizar tanto para la entrada de datos como para la conversión o para la salida de datos. La estructura de las funciones está pensada para que resulte fácil implementarlo con métodos muy similares a los procedimientos XDR generados por rpcgen.

· sock-channel : Módulo de canales GLib asociados a sockets. Este módulo incluye funciones para abrir sockets maestros y esclavos manteniendo el interfaz de programación de los canales GLib.
· record : Sun style XDR record marking. Funciones para enviar y recibir registros al estilo de los xdr_records de Sun Microsystems.
· cfg-parser : Intérprete de archivos .CFG.
· Biblioteca de soporte para MIND

· mind-db : Base de datos de MIND.
· packetizer : Visitante para el envío de datos usando XDR. Este módulo proporciona las estructuras y funciones necesarias para implementar un visitante que envía estructuras C arbitrarias empaquetando los datos con XDR y enviándolos a través de un GIOChannel de GLib.
· unpacketizer : Visitante para la recepción de datos usando XDR. Este módulo proporciona las estructuras y funciones necesarias para implementar un visitante que recibe estructuras C arbitrarias enviadas a través de un GIOChannel de GLib, desempaquetando los datos con XDR.
· printer : Visitante para impresión de estructuras. Este módulo proporciona las estructuras y funciones necesarias para implementar un visitante que imprime estructuras C arbitrarias utilizando la función de GLib g_log. De esta forma se puede redirigir el texto a cualquier dispositivo, archivo o widget con facilidad.
· get-glade : Visitante para leer formularios Glade. Este módulo proporciona las estructuras y funciones necesarias para implementar un visitante que lee formularios Glade en estructuras C arbitrarias.
· set-glade : Visitante para rellenar formularios Glade. Este módulo proporciona las estructuras y funciones necesarias para implementar un visitante que rellena formularios Glade con el contenido de estructuras C arbitrarias.
· enveloper : Visitante para el ensobrado de mensajes usando XDR. Este módulo proporciona las estructuras y funciones necesarias para implementar un visitante que envía estructuras C arbitrarias empaquetando los datos con otro visitante que se pasa como argumento en el constructor. Se utiliza para realizar volcados de tablas envolviendo el contenido de cada registro en un evento.
· event-packetizer :
· Interfaz gráfico

· vidi-map : Implementación del módulo de representación gráfica de objetos en un mapa.
· vidi-tree : Implementación de un árbol de relaciones entre los objetos gráficos.
· vidi-inspector :
· vidi-mind : Módulo para la conexión a MIND de VIDI. Implementa una conexión persistente a MIND para recibir eventos del OTS.
· Compatibilidad con SIV/CTC de SICO

· parser-sico : Intérprete de archivos .CFG de SICO. Parser de los archivos de configuración .CFG del SIV (línea física y todos los que cuelgan de éste). Al interpretarlo construye la base de datos estática.
· sico-log : Parser de eventos a partir de los logs del CTC de SICO. Transformación de logs en formato ASCII a un archivo con registros XDR que contienen todos los datos.
· Núcleo de MIND

· ots-event : Procesador de eventos del OTS. Este módulo proporciona las estructuras y funciones necesarias para implementar un procesador de eventos del OTS. Procesa la coherencia aplicando sucesivamente un conjunto de reglas. Utiliza un empaquetador para difundir los eventos.
· ctc2ots : Módulo convertidor de eventos CTC al OTS. Funciones para la conversión automática de eventos del subsistema de CTC a eventos del OTS.
· tetra2ots : Módulo convertidor de eventos TETRA al OTS. Funciones para la conversión automática de eventos del subsistema de TETRA a eventos del OTS.
· balizas2ots : Módulo convertidor de eventos Balizas al OTS. Funciones para la conversión automática de eventos del subsistema de balizas a eventos del OTS.
· ots2ots : Módulo difusor de eventos del OTS. Funciones para la propagación automática de eventos del OTS.
3.3. Comunicación

La comunicación entre los distintos módulos y procesos se realiza a través de mensajes (llamados eventos) por sockets TCP/IP. Unos módulos actúan como servidores y otros como clientes.

Para poder atender los eventos que le van llegando a un proceso, el proceso utiliza callbacks. Estos callbacks permiten registrar funciones que se ejecutarán cuando llegue un determinado evento. Una vez se han definido todos los callbacks, el proceso entra en el bucle de eventos, en el cual permanece a la espera hasta que reciba un evento que pueda procesar mediante la función indicada en uno de los callbacks que se definieron antes de entrar en el bucle de eventos.

Los eventos transfieren estructuras de datos entre unos procesos y otros. Estas estructuras de datos están codificadas en XDR.

3.4. Estructuras de datos

En este apartado se van a describir las distintas estructuras empleadas para comunicar datos entre los subsistemas de CTC, Balizas y TETRA con el OTS. Todo esto está especificado en los archivos “*.x” de definición de protocolo de cada subsistema. Estos archivos están codificados siguiendo el estándar XDR, fácilmente legible y parecido al C.
3.4.1. Subsistema de CTC (ctc.x)
· CTCTren: Información de Tren. Indica el número identificativo de Tren y su composición como la sucesión de los números de matrícula de los coches del tren.

· CTCItemCV: Información de estado de un Circuito de vía. Indicando su nombre, el estado en el que se encuentra (ocupado o libre) y la información de los trenes que se encuentran en ese circuito(hasta un máximo de 3).
· CTCSateliteInfo: Un satélite es un equipo del sistema CTC de Dimetronic que controla varios circuitos de vía. Esta estructura mantiene información de la cpu del satélite, el identificador del satélite, el estado (on, off), y el telemando, es decir la posibilidad de control remoto (on, off).
· CTCItemOtros: Indica el nombre de una Vuelta Automática y su estado (conectada o desconectada)
· CTCItemBD: Asocia CTCItemCV a líneas físicas. Es decir, para cada línea física se recibe una base de datos con sus circuitos de vía que la componen.
· CTCCambioEstadoCV: Evento que indica un cambio de estado (libre o ocupado) en un circuito de vía y que tren o trenes han provocado ese cambio de estado.
· CTCCambioEstadoOtros: Evento que indica un cambio de estado (conectada o desconectada) en una Vuelta Automática y en qué línea se encuentra.
· CTCCambioEstadoAttr: Evento que indica un cambio de nombre o composición de un tren. Informa de la línea en la que se ha producido el cambio, los atributos anteriores del CTCTren y los nuevos.
· CTCProximaSalida: A día de hoy (28/9/2004) no se utiliza en Metro. Se utiliza cuando los trenes van regulados por crono. Indica la hora de salida de los trenes de determinados andenes.
· CTCListaSecuencias: Relacionado con el anterior CTCProximaSalida.
· CTCCambioEstado: Evento genérico que informa de un cambio en alguno de los elementos del CTC (Circuito de Via, Hora, Teleind, Atributos del Tren, Satelite)
· CTCError: Informa de códigos de error del CTC y la descripción del error.
· CTCControlRegistro: Estructura que permite registrarse a determinadas líneas de las cuales recibir la información del CTC. Hay que indicar las líneas (con un bit a 1 en la posición del array), la descripción de quien se registra y el display (dirección IP y display de la máquina que se registra).
· CTCControlTeleind: Ordenes intercambiadas entre las interfaces gráficas del CTC y el SIV a través de sus respectivos servidores.
3.4.2. Subsistema de Balizas (balizas.x)
Dispone de mensajes de petición de información (PeticionIdentificacion) y recepción de información (MensajeIdentificacion). Archivo “balizas.x”
· PeticionIdentificacion: Mensaje de petición de información. Se puede solicitar un mensaje del tipo ESTADO_EMPLAZAMIENTO (para pedir un EstadoEmplazamiento) o ULTIMA_IDENTIFICACION (para pedir un IdentificaciónTren). Se debe indicar el nombre del circuito de vía en el que se encuentra la baliza a la que queremos preguntar.

· MensajeIdentificacion: Mensaje de recepción de información. Consta de una marca de tiempo (instante) y de una parte variable que depende del tipo de mensaje. Los tipos de mensajes posibles son ESTADO_EMPLAZAMIENTO para mensajes EstadoEmplazamiento, y ULTIMA_IDENTIFICACION o IDENTIFICACION_ON_LINE para mensajes IdentificacionTren. El tipo de mensaje IDENTIFICACION_ON_LINE no procede de una petición de información sino que proviene de una notificación espontánea de las balizas al paso de los trenes.
· EstadoEmplazamiento: Información de estado de una baliza. La baliza informa del circuito vía en el que se encuentra, del estado en el que se encuentra (normal, sin_comunicación, no_operativo, desconocido) y del instante desde el cual está en ese estado.

· IdentificacionTren: Información provista por el sistema de Balizas cada vez que se identifica un tren en una baliza: Circuito de Vía asociado a la Baliza, Instante en el que se realizó la identificación, Matrícula de todos los coches del tren, Sentido de movimiento del tren (normal o contra_via). El sentido normal de movimiento en la vía 1 es en orden creciente de punto kilométrico, en la vía 2 el sentido normal es en orden decreciente de punto kilométrico.

3.4.3. Subsistema TETRA (tetra.x)
· Coches_t: Información de un Coche. Indica su matrícula, su ISSI, y su posición dentro de la composición del tren (cabecera, intermedio, cola).

· Composición_t: Información de la composición de un Tren. Indica todos los coches que tiene el tren.

· CambioIssiChapa_t: Estructura enviada al servidor de audio tras un evento de cambio de chapa. Indica el número de línea en el que circula el tren, la chapa, el ISSI de la cabeza del tren, el ISSI de la cola del tren, y la composición.
· BaseDatosIssiChapa_t: Cuando se establece la comunicación con el servidor de audio, se envía toda la base de datos que relaciona ISSI’s con Chapas.
· Status_Tetra_t: Mensaje de Status de las consolas de radio de los trenes, generados por el conductor al pulsar ciertas teclas programadas de la consola. Son mensajes de estado, notificaciones o alarmas que realiza el conductor pulsando el teclado. Estos mensajes se transmiten como mensajes de audio (por tonos), pero a nosotros nos llega codificado como 6 bytes.
· CambioLocalizacionTetra_t : Mensajes de cambio de localizacion de equipos de radio. Indica su ISSI, su Zone, su Site, y su Gssi (grupo TETRA).
· ActivacionMegafonia_t :

· BaseDatosLocalizacionTetra_t :

· MensajeMovil_t :

3.4.4. Sistema OTS (ots.x)
Aquí se definen las estructuras que integran la información de los tres subsistemas anteriores: CTC, Balizas y TETRA. Estas estructuras son las que se utilizarán para comunicar datos y eventos entre los procesos del OTS y con la base de datos.
Las estructuras están comentadas en la documentación auto generada del sistema.
3.5. Base de Datos

Todos los datos que provienen de los distintos subsistemas que utiliza el OTS (CTC, Tetra y Balizas) se concentran y almacenan en tiempo real en una base de datos compartida, utilizando Berkeley DB versión 4.X. Esta base de datos se puede replicar en otras máquinas utilizando un mind-hub.
La base de datos es compartida, de manera que varios procesos pueden abrirla y realizar actualizaciones (transacciones) sobre ella, de forma atómica.
La base de datos se compone de dos partes, una estática o de datos estructurales que son siempre iguales durante la ejecución del sistema y otra dinámica o de datos en tiempo real que se van actualizando a medida que llegan los eventos con datos de los diferentes subsistemas con los que se comunica el OTS.

La base de datos estática se crea utilizando el ejecutable mind-db-init. Lo que hace dicho programa es leer los ficheros de configuración (*.CFG) del SIV (teleindicadores), en los cuales se definen los circuitos de vía, las estaciones, etc, y las introduce en la base de datos del mind. Los ficheros que genera son del tipo LNN-static.db

La base de datos dinámica se describe en XML (xmldb.dtd), lo que permite utilizar registros especificados como un tipo del lenguaje SunRPC, almacenarlos en la base de datos codificados en XDR de forma automática (los registros pueden ser de tamaño variable), y crear un número arbitrario de índices utilizando cualquiera de los campos como clave. Es mucho más eficiente no utilizar XDR para almacenar los registros y es por esa razón por la que en la implementación de MIND actual se trata de evitar esta característica. Sería perfectamente utilizable en aplicaciones que hagan algún tipo de logs indexados.
Las comunicaciones de datos, el almacenamiento en la base de datos y la representación textual y gráfica de los datos se realizan mediante visitantes genéricos clásicos.
Un visitante representa una operación a ser realizada en los elementos de una estructura de un objeto. El visitante permite acceder directamente a los datos que nos interesan para consultar datos, actualizar datos, guardar un volcado, …
El mayor problema del visitante es que se produce un fuerte acoplo entre la jerarquía de visitantes y la jerarquía de objetos visitables. Este problema se elimina mediante la generación automática de los visitantes a partir de los objetos visitables (definidos en lenguaje SunRPC), como se muestra en el apartado de Generación de Código.
3.6. Interfaz Gráfico

VIDI es el interfaz gráfico de usuario del OTS que permite, comunicándose con los procesos del OTS, visualizar gráficamente el movimiento de los trenes por la línea en tiempo real y obtener información de sus características.

VIDI puede ser utilizado en la misma máquina que el OTS, sin embargo, lo mejor es utilizarlo en una máquina distinta, en la que tendrán que ejecutarse un proceso mind-hub y el propio proceso VIDI. El proceso mind-hub se encargará de conectarse al otro proceso mind-hub del OTS y replicar la base de datos del OTS. De esta manera el VIDI podrá acceder a los datos de forma local que se irá actualizando en tiempo real.

VIDI utiliza la base de datos para visualizar gráficamente el movimiento de los trenes por la línea a medida que se van recibiendo los datos actualizados. El usuario puede pulsar sobre los trenes del interfaz gráfico y realizar cambios en algunas de sus propiedades. Para que estos cambios se produzcan físicamente en el tren, VIDI se comunica con “tetra” para poder mandar las ordenes correspondientes al tren (p.ej. cambiar el texto de un teleindicador del tren).

Para mostrar los objetos en el interfaz gráfico, VIDI se ayuda de dos visitantes específicos: set-glade y get-glade. A su vez, estos usan los ui-filters, que transforman los resultados de los visitantes por medio de otras consultas a la base de datos para que en vez de aparecer identificadores aparezcan nombres (p. ej. en vez del identificador numérico de andén, que aparezca el nombre de éste).

[image: image4]
Figura 3.2 : Diagrama de procesos del VIDI
3.7. Generación de Código

Gran parte de los archivos del sistema son generados de forma automática (incluida la documentación) a partir de descripciones en XDR o XML.

En la figura 3.1 sólo se representan los módulos no generados automáticamente. En la mayoría de los casos los módulos corresponden a una pareja de archivos C (*.h y *.c) que contienen el interfaz y la implementación respectivamente. La única excepción es el módulo ots-event, que permite su extensión mediante filtros. Cada filtro está asociado a un archivo *.c (mind-db-filter, mind-db-fix-filter, skip-synth-filter). La documentación relativa a cada módulo puede encontrarse en la sección correspondiente al archivo del mismo nombre.
La generación automática de archivos se representa gráficamente en el siguiente diagrama:
[image: image5.png] de datos y funciones.
W ntcottelon a Xk
Compatbies con oegen

Vit genricopraios

R e
L

Sty e deanae \ it s e se
R S
e

R i o ragos
Imb‘“‘ﬂu‘“m"’(«.

Figura 3.3 : Generación automática de código para el OTS
3.8. Archivos ejecutables

El Makefile de MIND genera los siguientes ejecutables:

· mind. Servidor de MIND, versión monolítica, single threaded.

· mind-hub. Concentrador de eventos de MIND. Opcionalmente también puede servir para replicar una base de datos MIND en otro ordenador.

· mind-ctc2ots. Servidor de MIND, parte de procesado de eventos del CTC.

· mind-tetra2ots. Servidor de MIND, parte de procesado de eventos TETRA.

· mind-balizas2ots. Servidor de MIND, parte de procesado de eventos de Balizas.

· vidi. Interfaz gráfico del OTS.

· ctcsim. Simulador del CTC. Lee archivos de log generados con sico2xdr. Es trivial leer un volcado de eventos XDR directamente del CTC.

· sico2xdr. Convertidor del formato de logs utilizado por SICO en formato XDR nativo, legible por ctcsim y más compacto.

· mind-db-init. Inicializa la base de datos de MIND. Lee los ficheros de configuración (*.CFG) y genera una base de datos con información estructural.

· mind-dump. Vuelca el contenido actual de la base de datos.

· ots-print. Imprime por pantalla en tiempo real los eventos del OTS de MIND generados por un proveedor cualquiera (mind-ctc2ots, mind-balizas2ots, mind-tetra2ots, mind-hub o mind).

· ctc-print. Imprime por pantalla en tiempo real los eventos generados por el CTC.

· ctc-filter. Filtra un archivo de eventos del CTC (generado por ejemplo con sico2xdr) para seleccionar los eventos correspondientes a sólo un conjunto de líneas determinado. Útil para reducir el tamaño de los archivos en las pruebas.

4. EJECUCIÓN DEL SISTEMA

El OTS se ejecuta en un equipo denominado SDR (Servidor de Datos Móviles). En el Metro este equipo se llama "datos1_moviles". Se puede acceder a él con sólo ejecutar el script "datos1" desde el equipo "salchicha".
Para ver la interfaz gráfica del MIND desde SICO hay que exportar el display de datos1_moviles al frontPCI02 con el siguiente comando

export DISPLAY=152.200.169.3:0

Después desde nuestro equipo de SICO, nos conectamos por VNC al frontPCI02, al que desde la red interna de SICO se le conoce como rdsi2 y tiene dirección IP 172.16.1.2
Todos los ejecutables incluyen la opción -h que imprime un texto de ayuda con todas las posibles opciones. Las opciones son consistentes entre diferentes programas, lo que facilita su manejo.

El proceso de ejecución de todo el sistema sería el siguiente

1. Generar la base de datos estática.

2. Ejecutar el servidor MIND. Existen múltiples maneras de ejecutar el servidor de MIND, cada una con sus ventajas e inconvenientes. Veremos las dos más usuales: ejecución en un único proceso o en múltiples procesos.

3. Ejecutar el visualizador VIDI.

4.1. Generación de la base de datos estática

Para generar la base de datos estática a partir de los ficheros de configuración del SIV, habría que ejecutar el siguiente comando:

./mind-db-init -z /home/metro/cfg/LinFis01/CfgLinFisica.CFG \

-z /home/metro/cfg/LinFis03/CfgLinFisica.CFG \

-z /home/metro/cfg/LinFis06/CfgLinFisica.CFG \

-z /home/metro/cfg/LinFis07/CfgLinFisica.CFG \

-z /home/metro/cfg/LinFis08/CfgLinFisica.CFG \

-z /home/metro/cfg/LinFis09/CfgLinFisica.CFG \

-z /home/metro/cfg/LinFis10/CfgLinFisica.CFG \

-z /home/metro/cfg/LinFis11/CfgLinFisica.CFG \

-z /home/metro/cfg/LinFis12/CfgLinFisica.CFG

4.2. Ejecución de MIND en un único proceso
La forma más sencilla de ejecutar mind es invocar el programa directamente. Antes hay que ejecutar el proceso tetra:
./tetra &

./mind

Por defecto ya configura los adaptadores de CTC, Tetra y Balizas en los puertos usuales y difunde los eventos generados en el puerto usual de MIND (5335). Todo el proceso es single-threaded, lo que facilita la depuración, pero la mayor parte de las funciones de mind (y en concreto todas las que afectan a la base de datos) son thread safe. Eso implica que el desarrollo de un servidor monolítico multithread no debería ser muy complejo si los requisitos de latencia máxima lo justificaran.

4.3. Ejecución de MIND en múltiples procesos

Una crítica posible a la forma de ejecución anteriormente descrita es que los procesos de conexión con los servidores de CTC y Tetra podrían bloquear a MIND durante un periodo de tiempo considerable.

Para aliviar esto se puede ejecutar cualquier adaptador como un proceso separado. Por ejemplo, esta sería la forma de ejecutar todos los adaptadores por separado:

./tetra &
./mind-ctc2ots -o 5336

./mind-tetra2ots -o 5337

./mind-balizas2ots -o 5338

De esta forma cada componente se ejecuta difundiendo sus eventos en un puerto distinto (al que podemos conectarnos con ots-print para analizar su correcto funcionamiento).
Cada componente actúa como un notificador de eventos pero los datos reales de la evolución del sistema se guardan en una base de datos Berkeley DB con acceso compartido. Es decir, no es necesario conectarse a ninguna fuente de eventos para poder ver una imagen real del sistema, extraer datos históricos o hacer estadísticas.

Incluso en caso de fallo de todos los subsistemas, la base de datos tendrá una imagen actualizada del sistema hasta el momento del fallo. Eso facilita el análisis post-mortem de la evolución.

4.4. Ejecución del visualizador VIDI
VIDI se puede ejecutar en la misma máquina que el OTS o en una máquina distinta. En ambos casos habrá que especificar todas las fuentes de eventos.
Si el VIDI se ejecuta en la misma máquina que el OTS, sólo será necesario ejecutar el vidi, pasándole los parámetros correspondientes.

./vidi -l 8 -i 5336 -i 5337 -i 5338

Si se quiere ejecutar el VIDI en una máquina distinta, se debe ejecutar mind-hub para concentrar sus eventos, difundirlos en un único puerto y replicar la base de datos:

./mind-hub -i 5336 -i 5337 -i 5338

./vidi

Hay que tener en cuenta que el vidi abre conexiones tanto con el mind (o mind-hub) como con tetra.
5. FUNCIONAMIENTO DEL SISTEMA
5.1. Servidor MIND

Se conecta con el CTC usando ctc2ots. Se conecta con el sistema de Balizas usando balizas2ots. Se conecta con el sistema Tetra usando tetra2ots. Atiende conexiones y añade al cliente como consumidor de eventos.

5.2. Subsistema de CTC

5.3. Subsistema de Balizas
El subsistema de Balizas actúa como un servidor que queda a la espera de que el proveedor de Balizas se conecte a él, para iniciar la comunicación. Una vez se ha producido la conexión, se reciben los eventos de Balizas y se convierten a eventos de OTS que son realmente los que se procesan.
5.4. Subsistema TETRA

6. ANEXOS

6.1. Sistema de CTC

Cuando un tren está en la vía pisa varios circuitos de vía. El CTC sabe las matrículas de los coches que están pisando cada circuito de vía e informa (pero dando las chapas que pisan un det. circuitos de vía; nunca las matrículas) a los consumidores de información del CTC.
Por otro lado, cuando el tren sale de cocheras, el jefe de depósito le dice al conductor del tren qué chapa (p.ej. N19) le tiene que poner el conductor al tren, y éste introduce en la consola del tren una petición de bautizo, que asigna a esa matrícula la chapa indicada.

El OTS tiene que guardar una relación:

CHAPA <> MATRÍCULA

NOTAS sobre el bautizo:

· Antes de llegar el tren a la última estación, el CTC le quita la chapa al tren de su BBDD (por razones de eficiencia)

· El jefe de depósito le asigna la chapa al salir del depósito

· Si se cae el CTC, el jefe de línea pregunta por radio las chapas y las reintroduce

· No es extraño que se produzcan cambios de chapa "en tránsito"; bien porque se unen dos trenes, porque uno sustituye a otro, por equivocaciones de chapa duplicada o por otras razones.

NOTAS sobre el CTC:

· Cuando un tren no tiene chapa (bien porque no se haya bautizado, por haberse caído el CTC o porque está llegando a la última estación y el CTC ya lo ha quitado de su BBDD), el CTC informa de un objeto asterisco-n-n (p.ej. "*17").

· Los mensajes que envía el CTC son el estilo de "chapa tal ha pisado el circuito de vía cual" o "chapa cual ha dejado el circuito de vía tal", pero hay veces que hay algún circuito de vía estropeado y no informa de la estrada en el circuito de vía y/o de la salida del mismo.

6.2. Sistema de Balizas

6.3. Sistema TETRA

TETRA es un sistema de transmisión digital de voz y datos vía radio. En el Metro, TETRA se utiliza para transmitir voz y datos entre los trenes y el Puesto de Control Central.

El esquema de comunicación TETRA sería el siguiente:

1. En cada cabina del tren hay una consola de radio TETRA (máquina Linux embebida de Amper) que habla con el sistema de control del tren, para conocer la línea por la que circula y la chapa que tiene el tren además de otras cosas. En cuanto la consola conoce esta información, envía un Mensaje de Bautizo con la información de la línea en la que circula el tren y la chapa que tiene el tren en ese momento. Además la consola de radio TETRA dispone de un módulo con display, teclado, altavoz y micrófono a través del cual puede interactuar con el conductor. A través de los botones del teclado, el conductor puede indicar estados, notificaciones o alarmas del tren, que se transmiten como mensajes de audio por tonos. Estos mensajes se llaman Mensajes de Status. Toda la información (datos y audio) que procesa la consola de radio es enviada al equipo de radio TETRA.
2. El equipo de radio TETRA se encuentra también en cada cabina del tren y está conectado a una antena TETRA (Motorota). Este equipo se identifica por su número llamado ISSI, que normalmente se corresponde con la matrícula del coche en el que se encuentra. Este equipo es el encargado de comunicarse vía radio con las estaciones.
3. La radio se transmite desde los trenes a través de un cable coaxial radiante a lo largo del túnel, hasta llegar a las estaciones.

4. En cada estación, existe una base de radio TETRA y una antena (EBTS) que se comunican con los trenes. Esta base de radio además, está conectada punto a punto con el Puesto de Control Central.
5. La información de los trenes se recibe en el Puesto de Control Central a través de un equipo denominado CATIA (de Fedetec), que es el que recibe la información de los trenes.
6. Además existe un servidor de audio (AudioServer) que se conecta al CATIA para obtener la información de audio.

7. Por otro lado existe otro equipo llamado Short Data Router (SDR) que se encarga de comunicar mensajes cortos de TETRA.
8. Los Mensajes de Bautismo se envían al AudioServer para que pueda mantener una correspondencia entre ISSI’s y localizaciones y así poder conocer en donde está cada ISSI para saber de donde vienen los mensajes cortos del SDR.
7. ÍNDICE DE FIGURAS
2Figura 2.1 : Visión General del OTS

3Figura 2.2 : Diagrama de Procesos del OTS

6Figura 3.1 : Arquitectura del OTS

10Figura 3.2 : Diagrama de procesos del VIDI

11Figura 3.3 : Generación automática de código para el OTS

Información unificada de seguimiento de trenes

OTS

Balizas

Audio

TETRA

Datos TETRA

CTC

serv-siv

SDR

Audio Server

SIP

mind-hub

VIDI

OTS

…

tetra

mind-ctc2ots

mind-tetra

2ots

mind-balizas

2ots

mind-hub

VIDI

BD

OTS’

mind-hub

VIDI

BD

OTS

tetra

OTS

