Arcom Embedded Linux

Technical Manual

www.arcom.com

@rcom
» SPECLIIS conpany

Arcom Embedded Linux

Definitions

Arcom is the trading name for Arcom Control Systems Inc and Arcom Control Systems Ltd.

Disclaimer

The information in this manual has been carefully checked and is believed to be accurate. Arcom assumes no responsibility
for any infringements of patents or other rights of third parties, which may result from its use.

Arcom assumes no responsibility for any inaccuracies that may be contained in this document. Arcom makes no commitment
to update or keep current the information contained in this manual.

Arcom reserves the right to make improvements to this document and/or product at any time and without notice.

Warranty

This product is supplied with a full 3 year warranty. Product warranty covers failure caused by any manufacturing defects.
Arcom will make all reasonable effort to repair the product or replace it with an identical variant. Arcom reserves the right to
replace the returned product with an alternative variant or an equivalent fit, form and functional product. Delivery charges will
apply to all returned products. Please go to www.arcom.com/support for information about product return forms.

Trademarks

Linux is a registered trademark of Linus Torvalds.

Red Hat is a registered trademark of Red Hat, Inc.

ARM and StrongARM are registered trademarks of ARM, Ltd.

Intel and XScale are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

X Window System is a trademark of X Consortium Inc.
All other trademarks and copyrights referred to are the property of their respective owners.
This product includes software developed by the University of California, Berkeley and its contributors.

Revision History

Manual PCB Date Comments

Issue A 12" July 2002 Combined Quickstart and Technical Manual.
Issue B 8™ July 2003 Minor editorial changes

Issue C 3" February 2004 Major changes for V315 Development Kit.
Issue D 14" June 2004 Minor changes for V316 Development Kit.
Issue E 3¢ August 2004 Major updates and layout changes.

© 2004 Arcom.

Arcom is a subsidiary of Spectris plc.
For contact details, see page 62.

UKAS

QUALITY
MANAGEMENT

003

Arcom operates a company-wide
quality management system, which
has been certified by the British
Standards Institution (BSI) as
compliant with ISO9001:2000

http://www.arcom.com/support

Arcom Embedded Linux Contents

Contents
[} (e To 18 o7 1 o] o H0 PSPPSR 5
(I To7=T o ES]T g To [N =) I oo] g g oo T 1= o £ 6
Handling your board safely ... 6
About this ManUAal ... 7
Related dOCUMENTS ...ttt ee e eeeeeeeeeas 7
1070 o 1V7=T o) o] 1= PSPPSR 8
Development Kit CD CONTENEScoooiiiiiiici e 9
1T ISV 1= =Y/ 1 | 10
Journaling Flash file SYSteM.........oo e 10
RAM Il SYSIEIM ...t e e e e e e e e s 11
1070] 01T T8 e Y = PP PEPPTPURRPPR 12
Default passSWOrdScoooiiiiii 12
(83 oTo = o I 0. 7= o] 1 Vo S 12
Serial port CONfIQUIALIONoooiiiiiiiiiiiiieeeeeeeeee ettt e e e e eeeesaeeseesrsesesessaerrarerees 12
SYStEM STAMTUP SCHPIS...ciiiiiiiiiiiieeiee ettt et eereeesaeesaessasseseseassaaesrrrerens 15
Making an application run automatically at boot..........cccccccoeii i, 16
Network configuration ... 16
Wireless Network CONfIQUIAtioNuuuueei e 19
] = PSPPSR 20
Configuring and loading kernel MOdUIES.............cooiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 20
System recovery and SiNgle USEr MOE..........cooiiiiiiiiiiiee e 22
SECUIE SNEII (SSH) ...t e e e e e e e e e e e e e e e e e e e 23
INtrOAUCHION 10 SSH ... e e e e e e e e e e e e e e e 23
Using SSH COMMANAS.........cooiiiiii e 24
Public key authentication Mmethods ... 26
Further information @about SSH ... 27
ReMOVING [€JACY SEIVICEScciieieeiiiee et e ettt s e e e e e e e e e e e e e eaaa e e e e e e e eeeeennnns 27
= Tod (&= o -3 ¢ g F=T g =To =T .01 o | O 28
REMOVING PACKAGES ...ttt e e e e e e e e e e e e e 28
AdAING PACKAGES ...ttt e e e et e e e e e e e e e e e e e e e e ae e e 28
The X WINAOW SYSTEIM ...t e e e e e e e e e e rneeaae s 29
LA e [0}V =1 g =T = S 29
Using a touchscreen via a TSC1 controller boardcccoeoeei 29
Developing SOtWAre fOr AEL..........o et e e a e e e eannneees 31
HOSt SYStEM reqUINEMIENTSooiiiiiiie e 31
Installing the AEL host envIironNmMeNt..........oooiiiiiiii e 33
Installing additional packages into the host environment..............ccccoooei 33
ODBtAINING NEIP ...ttt e e e e e e e e e e e e eneees 35
Cross compiling applications and [Ibrari€s...........ceeeeeviiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeevee e 35

107 oL TR ot] 1 0] o]1F= 1110 AT =)= Ta] o[T 38

Arcom Embedded Linux Contents

Debugging applications onthe target ... 40
(07e]aaT o] 1 [TaTe JE= T =4 o U= ISP PRSP 42
Common embedded software development tasks...........coeviviiiiiiiiiiiiiiieiiieeeeeeeeveeeee s 45
ReEABOOL 52
The RedBoot COMMANG lINE e 52
Configuring and using REABOOLuiiiiiiiiii e 52
Loading images iNt0 RAM ... e 54
Managing images iN FIash ... 57
EXECULING @N IMAGE ...t e e e e e e e e e e e 60
Appendix A - Contacting ArCOMcoooiiiiii i 62
Appendix B - SOftware SOUICES..........oooiiiiiiiii 63
Appendix C - Reference information.............oooiiiiiiiii e 64
Appendix D - Acronyms and abbreviations ... 65

Arcom Embedded Linux Introduction

Introduction

Arcom Embedded Linux (AEL) is a standard Linux distribution produced by Arcom. It is
optimized to fit within the on-board Flash of Arcom’s range of Single Board Computers
(SBCs). AEL is based on the standard Linux kernel and user space tools.

ﬁ—; Arcom provide free first line technical support for this product.
== See Appendix A — Contacting Arcom, page 62.

——

The minimum target footprint for AEL is a system with 16MB RAM and 8MB Flash
memory. Additional RAM and/or Flash enables greater functionality.

The AEL distribution consists of:

e Astandard Linux kernel, built to support Flash memory access.
e A number of Linux device drivers (some board-specific).

o System and application libraries.

o User space applications and utilities.

Some major components are:

e THTTPD web server.

e FTP and telnet servers and clients.

e Bourne Again Shell (BASH).

e OpenSSH (secure telnet and FTP replacement).

o XFree86/TinyX (on targets where graphics hardware is available).
e Many other standard Linux utilities.

You may well want to add specific functionalities to the base system. You can do this by
adding libraries and/or applications compiled on a host Linux system. We supply all
source code for the kernel, libraries and applications in the AEL distribution. This means
you can completely rebuild the environment from scratch, if required.

AEL is implemented in a way that enables it to support installation on space-constrained
devices, such as the on-board Flash. On certain target boards, however, you can install

the distribution on IDE-compatible media. Consult the Quickstart Manual for your board

to see if you can do this.

Arcom SBCs are not intended to be used to build applications. We recommend you
design and build applications on a host Linux system, and then download them to the
target system using FTP or SCP.

If you want to develop on the target board, it may be possible to install a host operating

system (such as Red Hat Linux) with the addition of a hard disk drive. To do this, the
following conditions must be satisfied:

© 2004 Arcom Issue E 5

Arcom Embedded Linux Introduction

e The target hardware must support the addition of a hard disk. For this information,
see the Technical and Quickstart Manuals for your board.

e A suitable operating system for the target board’s processor architecture must exist.
It is not possible to develop applications under AEL directly.

Licensing AEL components

The AEL Development Kit contains components licensed by different sources. Many of
these are Open Source licenses (see www.opensource.org). If you further distribute
these modules you may, under certain circumstances, be required to release source
code for any modifications you have made.

Please consult Appendix B - Software sources, page 63, and the relevant source
packages to ensure you are familiar with the licensing requirements of any packages
that you modify. Copies of the more widespread licenses are included on the
Development Kit CD, in the folder /licenses.

Handling your board safely

Anti-static handling

This Development Kit contains CMOS devices. These could be damaged in the event of
static electricity being discharged through them. Observe anti-static precautions at all
times when handling circuit boards. This includes storing boards in appropriate anti-
static packaging and wearing a wrist strap when handling them.

Packaging

Should a board need to be returned to Arcom, please ensure that it is adequately
packed, preferably in the original packing material.

© 2004 Arcom lIssue E 6

http://www.opensource.org/

Arcom Embedded Linux About this manual

About this manual

This manual provides detailed information about the AEL distribution. It explains, with
examples, how to use the key technologies supplied in this distribution.

AEL is available on a number of different Arcom boards, each with different devices and
hardware capabilities. Certain sections of this manual may therefore not apply to
particular boards. For example, boards without display hardware do not support the X
Window System, so that section can be ignored.

Related documents

In addition to this manual, you can obtain useful information from a variety of sources.
These include:

¢ An index.html file, on the Development Kit CD, which may be opened with any web
browser. This contains links to many of the documents mentioned in this section and
throughout this manual.

e The Linux RUTE manual. This contains a general overview of how to use a Linux
system. You can find it on the Development Kit CD, in the folder /manuals/.

e The Linux online help system. The pages in this help system are referred to from
time to time, in the format ‘name (section)’, for example ‘interfaces (5) man page’.
You can view this help on the host system (not on the target) by typing man name,
or man section name. For the above example, therefore, you might type man
interfaces, or man 5 interfaces. Include the section if possible, because in some
cases a page with the same name may exist in a different section.

e The selection of Linux ‘how to’ documents covering common topics on the
Development Kit CD, in the folder /manuals/HOWTO/. The full set of ‘how to’
documents is available at www.tldp.org.

e The Arcom Quickstart and Technical Manuals, which are also in the folder /manuals/
on the Development Kit CD.

e The websites to which you can find links in Appendix B - Software sources, page
63.

© 2004 Arcom lIssue E 7

http://www.tldp.org/

Arcom Embedded Linux About this manual

Conventions
Symbols
The following symbols are used in this guide:
Symbol Explanation
i , : : i
\\E_,:}h Note - information that requires your attention.

-
L3

Tip - a handy hint that may provide a useful
alternative or save time.

Caution — proceeding with a course of action may
damage your equipment or result in loss of data.

@

Typographical conventions

This manual contains examples of commands that you can enter. These are shown as
follows:

$ make install DESTDIR=/tmp/target-install

The initial symbol ($ in this case) indicates the prompt that the command is for and
should not be typed.

The prompts used are explained in the following table:

Prompt Explanation

$ Linux (BASH) as a regular user.

Linux (BASH) as root.

RedBoot> RedBoot command line.

(gdb) GNU DeBugger prompt.

Different fonts are used throughout the manual to identify different types of information,

as follows:

Font Explanation

Italics Parts of a command that should be substituted
with appropriate values.

Bold Information that you enter yourself.

Screen text Information that is displayed on screen.

Long commands that don't fit on one line, and must therefore be split across multiple
lines, are indicated by a backslash (\) at the end of the line.

© 2004 Arcom lIssue E 8

Arcom Embedded Linux Development Kit CD contents

Development Kit CD contents

The Development Kit CD contains the following top-level folders:

Folder Contents

packages AEL source and binaries.

examples Various examples.

host Host environment.

licenses Common licenses used by the software included in the

Development Kit.
manuals Arcom and third party documentation.

reference Board reference documentation.

© 2004 Arcom lIssue E 9

Arcom Embedded Linux File system layout

File system layout

The exact layout of the file system on an AEL system depends on the target board. In
general, the Flash includes one or more smaller partitions containing the boot loader
and Linux kernel images’, along with one large partition that covers the rest of the
device and contains the root (/) file system. The partition sizes are typically determined
from RedBoot's Flash Image System (FIS) and can be changed from RedBoot's
command line. On boards without RedBoot, the partitions are hard coded into the
kernel binary, and to change them you must rebuild the kernel.

RedBoot’s FIS is used to provide a partition table on boards that use RedBoot as the
boot loader. In such cases, the Flash can be repartitioned from the boot loader
command line.

In addition to the Flash file systems, a RAM-based file system is mounted on /var/tmp.

Journaling Flash file system

The Flash is formatted using the Journaling Flash File System (JFFS2). This places a
compressed file system onto the Flash transparently to the user. Key features of JFFS2
include:

o Direct targeting of Flash devices.

e Robustness.

e Consistency across power failure.

¢ No integrity scan (fsck) is required at boot time after normal or abnormal shutdown.
o Explicit wear levelling.

e Transparent compression.

Flash partitions appear as pseudo-block devices with major number 31, which can be
mounted using JFFS2, as follows:

mount -t jffs2 /dev/imtdblock1 mount-point

There are a maximum of 16 partitions. These are numbered 0 to 15, and correspond to
the block devices /dev/mtdblockO through /dev/mtdblock15. In addition, each partition
has a character device, /dev/mtdN. This is used to access advanced features of the
Flash device, such as sector locking.

No special utility is required to make a JFFS2 file system. Simply erase the whole of the
partition using eraseall —j, and mount as normal. The —j option causes an empty JFFS2
file system to be created rather than completely erasing the flash device.

JFFS2 partitions do not require an integrity check (fsck) to be performed on startup,
after either normal or abnormal shutdown. The supplied /sbin/fsck.jffs2 is a dummy
which always succeeds and is present to simplify the boot scripts.

' Sometimes the boot loader and kernel are combined into a single Flash partition.

© 2004 Arcom lIssue E 10

Arcom Embedded Linux File system layout

Although JFFS2 is a journaling file system, this does not preclude the loss of data. The
file system remains in a consistent state across power failure and is always mountable.
However, if the board is powered down during a write, the incomplete write is rolled-
back on the next boot. Any completed writes are not affected.

For more information about JFFS2, see sources.redhat.com/jffs2.

RAM file system

AEL systems make use of a RAM-based file system (tmpfs) mounted on /var/tmp. The
contents of this file system are not preserved through reboot. The RAM file system
grows and shrinks to accommodate only the size of the files it contains. This means
there is very little overhead.

To prevent the RAM file system using the whole of RAM, the file system is constrained
to use a maximum of 4MB of memory. You can change this by editing /etc/fstab and
changing the size= parameter for /var/tmp.

© 2004 Arcom Issue E 11

http://sources.redhat.com/jffs2/

Arcom Embedded Linux Configuring AEL

Configuring AEL

Default passwords

When AEL is supplied, it is configured with two users, the super user (known as root)
and a regular user called arcom. The default password for both accounts is arcom.

To change a user’s password, log in as that user and run the passwd command.

To add a user, log in as root and run the adduser command, for example:
adduser abc

. ¥ For security reasons, it is essential that you change the passwords for any
—>_ deployed system.

Keyboard mapping

When supplied, AEL is configured for a US-style keyboard. This configuration is
controlled by the file /etc/console/keymap.gz, which is a symbolic link to us.map.gz in
the folder /usr/lib/kbd/keymaps/i386/qwerty/.

If you want to use another keyboard layout, change this link to point to another file. For
example, for a UK keyboard:

In —sf /usr/lib/kbd/keymaps/i386/qwerty/uk.map.gz /etc/console/keymap.gz

Once you have configured the new keymap, you may reload it with:
letclinit.d/loadkeys start

Additional keyboard maps can be found in the kbd source package on the CD.

Serial port configuration

The Linux kernel that is shipped as standard with AEL already contains driver support
for the standard serial 16550 UARTSs (such as those found on many of Arcom's
processor boards), as well as the AIM104-COM4 peripheral board and many third party
serial boards. A standard AEL kernel can support many serial ports (typically up to 64)
but only allocates a small number for the on-board UARTSs.

Configuring serial ports using setserial

You can configure serial ports using the setserial tool. This section provides a brief
overview of the setserial tool. For more detailed information, refer to the setserial(8)
man page on your host system, or see setserial.sourceforge.net/setserial-man.html.

© 2004 Arcom Issue E 12

http://setserial.sourceforge.net/setserial-man.html

Arcom Embedded Linux Configuring AEL

You can view the current configuration of a serial port by passing the device to
setserial. For example, use the following command to view the configuration of COM1,
which is /dev/ttyS0:

setserial /dev/ttyS0

You can obtain more detailed information by passing the —a flag, as follows:
setserial —a /dev/ttyS0

Passing additional options to setserial configures serial ports. The following table
outlines the common options:

Option Description

port port_number Sets the I/O port used by this serial port.
irq irq_number Sets the IRQ used by this serial port.

uart vart_type Sets the UART type. Permitted types are none, 8250, 16450,
16550, 16550A, 16650, 16650V2, 16654, 16750, 16850, 16950
and 16954.

autoconfig Causes the kernel to attempt to automatically detect the UART
type. If the auto_irq option has been given, it also attempts to
determine the IRQ.

This option must be given after the port and irq (or auto_irq)
options.

auto_irq Causes the kernel to attempt to automatically determine the IRQ
to use when performing automatic configuration.

It is much safer, however, to explicitly configure the IRQ using the
irq option. You can disable this option by prefixing it with a
carat ().

baud_base Sets the base baud rate. This is the clock frequency divided by
16.

The default base baud rate is normally either 115200 or the
maximum baud base the port is capable of. In some cases,
however, the default is 0. If so, you cannot set any other options
until you have set a suitable baud_base. You can do this by
passing baud_base as the first option.

Further options are described in the setserial (8) man page.

Configuring a new port to an additional serial board

You may have added further serial ports to your processor, for example using an Arcom
AIM104-COM4 or third party serial board. If so, you can use the above commands to
configure any of the unused serial ports. Simply choose a free serial port /dev/ttySn and
configure it as described above, in accordance with the settings you have configured on
the peripheral board itself. Consult the peripheral board's documentation for details.

© 2004 Arcom lIssue E 13

Arcom Embedded Linux Configuring AEL

Automatically loading the serial port configuration on boot

At boot time the contents of the file /etc/serial.conf are parsed and the serial ports are
configured accordingly. Each line of the file starts with the name of a device and is
followed by one or more options that are passed to setserial.

For example, to set the irg of COM1 to 7, add the following to /etc/serial.conf:
/devittySO0 irq 7

You can also generate a configuration line using the —G switch to setserial to generate
an entry representing the current state of a port. For example, the following command
appends an entry for /dev/ttyS1 to the configuration file:

setserial —G /dev/ttyS1 >> /etc/serial.conf

Removing log in session from ttyS0

The default installation of AEL is configured to run a log in session on ttyS0 (COM1).
This can cause problems if your application wants to use ttyS0, as the two conflict. This
often manifests as the serial port changing baud rate at unusual times.

Before removing all log in sessions, either:

e Ensure you have some other way of logging into the system, such as via
SSH or a local console.

or
e Be prepared to boot to single user mode, as described on page 22.

To remove the serial log in session, you can either:

o Edit /etc/inittab and remove the following line:
T0:23:respawn:/sbin/getty -L ttyS0 115200 vt100
Then signal init to reload its configuration by entering:
telinit q
Or
e Move the log in session to another serial port (or add another one) by adding lines
as follows:
Tn:23:respawn:/sbin/getty —L ttySn 115200 vt100
(Where n is the number of the serial port to use.)

© 2004 Arcom lIssue E 14

Arcom Embedded Linux Configuring AEL

System startup scripts

AEL uses a system V type init process. Scripts are placed in /etc/init.d/, with symbolic
links for each runlevel in etc/rc?.d/.

? may be any of the following characters:

Character Function Description

S Startup Run once at boot time.

0 Halt Run on system shutdown.

1 Single Run on entering single user mode.
2 Normal Serial login only.

3 Normal Serial and VGA login.

4 Normal VGA login only.

5 Normal VGA login only.

6 Reboot Run before rebooting.

% The default runlevel is level 3 for targets with graphics hardware, and level 2 for
— > others.

When the runlevel changes, the K* scripts in the /etc/rc?.d/ folder corresponding to the
new runlevel are executed in alphanumerical order (with an argument of stop). The S*

scripts in the same folder are then executed in alphanumerical order (with an argument
of start).

You can start or stop a service manually by calling the script in /etc/init.d with a
parameter of either start, stop or restart.

: Calling the script with no parameters normally displays a complete list of the
—">_ possible actions.

© 2004 Arcom lIssue E 15

Arcom Embedded Linux Configuring AEL

Making an application run automatically at boot

If you want an application to run automatically at boot, follow these steps:

1 Write a script that runs your application. For example, you may create a script
called ‘'someapp’.

2 Put the script in the following folder:
letc/init.d

3 Make the script executable by entering the following command (replacing
‘someapp’ with the name you’ve given your script):

chmod +x /etc/init.d/someapp

4 Make a symbolic link in /etc/rcX.d that points to the script in /etc/init.d. For the
‘someapp’ example, you might therefore enter:

In -s /etc/init.d/someapp /etc/rcX.d/S99someapp
(Where X is the runlevel number.)

For example, at runlevel 3, you would enter:
letc/rc3.d/S99someapp

I;% l Using 99 ensures that your application starts after all other services.

Network configuration

You can view the current Ethernet configuration by running ifconfig, and the current
default gateway with route.

IP address configuration

In the default install of AEL, the network device is configured to obtain an IP address
automatically via DHCP (Dynamic Host Configuration Protocol). If you are running a
DHCP server on your network, or you want to force a static IP address, you can
reconfigure the device by editing the file /etc/network/interfaces. The format of this file is
described in the interfaces(5) man page.

Each interface is defined by a line starting with the iface keyword. The syntax is:
iface NAME FAMILY METHOD

© 2004 Arcom lIssue E 16

Arcom Embedded Linux

Configuring AEL

The parameters you can specify are explained in the following table:

Parameter Description

NAME The name of the interface (for example eth0).
The name given to an interface in Linux is the device type with
a numerical suffix. Thus, the first Ethernet device is known as
eth0, while the second (if present) is eth1. The first wireless
network device is called wlanO.

FAMILY The address family for the interface (normally inet for IPV4).

METHOD The method to be used to obtain an address for this interface.

The available methods include loopback, static, manual and
dhcp.

After each iface line there may be one or more lines that specify further options. In
general, only interfaces that use the static method require additional options.

The following options are valid for any interface:

Option

Description

up COMMAND
pre-up COMMAND

down COMMAND

Run command after bringing the interface up.
Run command before bringing the interface up.

Run command before taking the interface down.

post-down COMMAND Run command after taking the interface down.

For each of the above there also exists a folder, as follows:
letc/network/if-<option>.d/

The scripts in each of these are run after the corresponding option, if any, has been run.
All of the commands are called with several environment variables set. These variables
are described in the following table:

Option Description

IFACE The name of the physical interface.
ADDRFAM The address family, for example inet.
METHOD The configuration method, for example static.
MODE The mode, which may be either start or stop.

© 2004 Arcom Issue E

17

Arcom Embedded Linux Configuring AEL

Statically configuring an interface

The following options are valid for an IPV4 interface that is statically configured, using
the static method:

Option Description
address ADDRESS Address (dotted quad). Required.
netmask NETMASK Netmask (dotted quad). Required.

broadcast BROADCAST _ADDRESS Broadcast address (dotted quad).
network NETWORK _ADDRESS Network address (dotted quad).

gateway ADDRESS Default gateway (dotted quad).

For example, to configure ethO to use the static address 192.168.1.4/24 with a default
gateway of 192.168.1.1, enter the following in /etc/network/interfaces:

iface eth0 inet static
address 192.168.1.4
netmask 255.255.255.0
gateway 192.168.1.1

Manually configuring an interface

The manual method causes no configuration. Such interfaces can be configured using
the up-* and down-* scripts.

Configuring an interface using DHCP

The DHCP method uses an installed DHCP client to obtain configuration information.
The hostname HOSTNAME option, which requests a specific hosthame from the
server, is valid for an IPV4 interface configured using DHCP.

Automatically bringing up an interface on boot

Hostname

Aline in /etc/network/interfaces beginning with the auto keyword specifies interfaces
that should be brought up on boot. For example, to bring up the loopback (lo) and first
Ethernet (eth0) interfaces, include the following:

auto lo eth0

You can include as many auto lines as you like.

The default hostname for a board is the board type. To change the hostname, edit the
file /etc/hostname.

You can use the command hostname to view the current hostname.

© 2004 Arcom lIssue E 18

Arcom Embedded Linux Configuring AEL

Wireless network configuration

Wireless support under AEL has been tested using a Linksys Wireless CompactFlash
Card (model WCF12). This card is based on the popular PRISM chip set and any
PRISM2, 2.5 or 3 based card should work. Cards based on other chip sets may or may
not work.

This section explains how to configure wireless networking (WLAN) to access a network
via a wireless access point under AEL. For further details, see the Wireless Tools for
Linux website at www.hpl.hp.com/personal/Jean Tourrilhes/Linux/Tools.html and the
Host AP (the card drivers) website at hostap.epitest.fi/.

Configuring the wireless network device

In order to connect to a wireless network, you must obtain the following settings from
your network administrator:

o ESSID network identifier, for example ABC-Wireless-Network.

e Radio channel to use (1-14, depending on local legislation and access point
configuration).

e Shared keys used by your access point, if your access point is configured to use
Wired Equivalent Privacy (WEP) encryption.

Configuration is carried out with extra options in /etc/network/interfaces in the
appropriate iface stanza for the WLAN device (usually wlan0), as described in the
previous section. The more common options are listed in the table below.

Option Description

wireless_mode MODE Sets the operating mode of the device. Common values for
MODE are:

e Adhoc. A network composed of only one cell and without
an access point.

e Managed. Node connects to a network composed of
many access points.

wireless_essid ESSID Sets the ESSID (network name).
wireless_channel CHAN Specifies the radio channel (1-14) to use.

wireless_env ENC Sets the level of encryption to use. ENC may be one of:
e Off. No encryption.

e Open. Encryption is used if available but non-encrypted
connections are permitted.

e Restricted. Encryption is required.

wireless_keyN KEY Sets each of the four encryption keys. N is 1-4 and indicates
which of the keys to set. KEY is the encryption key
composed of either 5 bytes (for 64-bit WEP) or 13 bytes (for
128-bit WEP) as hexadecimal digits.

wireless_defaultkey N Uses key N (1-4) as the default key

© 2004 Arcom lIssue E 19

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
http://hostap.epitest.fi/

Arcom Embedded Linux Configuring AEL

Example configuration

IPSEC

For a node that is connected to the ABC-Wireless-Network using encryption and
obtaining its IP information via DHCP, the following /etc/network/interfaces stanza might
be used:

iface wlan0 inet dhcp
wireless_mode managed
wireless_essid ABC-Wireless-Network
wireless_channel 11
wireless_enc restricted
wireless_key1 893248A248B9443FC00D423090

IPSEC is a standard for the encryption and authentication of IP traffic. To use it on
boards with IPSEC support, the freeswan-utils package must be installed on the target.
This package is provided on the accompanying Development Kit CD. Refer to
www.freeswan.org/ for more information about its configuration and use.

Configuring and loading kernel modules

The Linux kernel supports configuring and loading device drivers as external modules.
This means much of the system need only be resident in RAM when absolutely
necessary.

Modules are loaded using the modprobe utility, which in turn calls the lower level
insmod utility. You need not normally call either of these utilities manually, since the
kernel automatically calls modprobe when it is asked to open a device for which no
module is currently loaded. The modules that are available via modprobe on the current
system are usually found in the /lib/modules/VERSION/ folder corresponding to the
running kernel.

You can load a module that is installed in the /lib/modules/VERSIONI/ folder by calling
modprobe with just the module name and without the .o suffix. For example, to load the
ppp_generic.o module, which is installed under /lib/modules/VERSION/, enter the
following command:

modprobe ppp_generic

Modules can be loaded from elsewhere by using the insmod utility directly and giving a
full path to the module. For example, to load the module /tmp/mymodule.o, enter the
following:

insmod /tmp/mymodule.o

L)

:?;‘ You can view the list of currently loaded modules using the command Ismod.

© 2004 Arcom lIssue E 20

http://www.freeswan.org/

Arcom Embedded Linux Configuring AEL

Passing parameters to modules

Many kernel modules can take parameters that allow you to tweak various options. The
available parameters (along with other interesting information) can be listed using the
modinfo utility, as follows:

modinfo ppp_generic
modinfo /tmp/mymodule.o

In many cases, the parameters of a particular module are documented more fully within
the kernel source tree.

Configuring modprobe

The modprobe utility (but not the insmod utility) can be configured to automatically
pass parameters when a module is loaded. This is useful when the kernel calls
modprobe for you but you still want to pass parameters to the module.

The modprobe configuration is stored in /etc/modules.conf (generic configuration) and
/etc/modules.conf.board (board-specific configuration). Each entry has the following
format:

options MODULE PARAMTERS

For example, to pass debug=1 whenever loading the ppp_generic module, use:
options ppp_generic debug=1

In addition, modprobe can alias one module name to another. This is useful because
the kernel often calls modprobe with an abstract service name rather than a specific
module. For example, when an attempt is made to access the first Ethernet device, the
kernel calls modprobe to load ethO (rather than a specific Ethernet driver module). In
such cases ethOQ is configured as an alias for the actual Ethernet module. For example
(if smc91x is the driver for ethO on your system):

alias eth0 smc91x

The full modules.conf format is in the modules.conf(5) man page.

Automatically loading modules at boot time

In most cases, the kernel loads the correct modules automatically or they are loaded by
the hotplug daemon. In some circumstances, however, this is not the case and it is
desirable to load the module automatically and unconditionally at boot time. You can do
this by listing the modules you wish to be loaded, one per line, in /etc/modules. Each
line must consist of a module name (or alias). This may be followed by one or more
optional parameters.

Removing kernel modules

A kernel module that is not in use by the system can be removed using the rmmod
command.

© 2004 Arcom Issue E 21

Arcom Embedded Linux Configuring AEL

System recovery and single user mode

If a configuration error has been made that prevents you from logging in, you may be
able to boot into single user mode in order to repair the problem. A target board can be
booted into single user mode by adding the word single to the kernel command line.
This is done using the RedBoot exec command described on page 60.

If it is not possible to recover the system using this method, you may have to reload the
default Development Kit image, as described in Updating the entire Flash on page 60.

© 2004 Arcom Issue E 22

Arcom Embedded Linux Secure Shell (SSH)

Secure Shell (SSH)
Introduction to SSH

SSH (Secure SHell) is a secure replacement for several common Internet protocols, all

of which have security flaws when used in a non-trusted network environment (primarily
the plaintext exchange of passwords across a non-trusted network). These include, for

example, the Berkley r* tools (rlogin, rsh, rexec), FTP and telnet.

SSH has several advantages over these tools. These include:

o All traffic sent across the network is encrypted using strong encryption. Critically,
this includes passwords.

e Prevention of spoofing and man-in-the-middle attacks using host keys.

e Tunnelling of arbitrary connections through an SSH pipe, known as port forwarding
(in particular X11 forwarding).

e Enhanced authentication methods that improve on normal-based mechanisms.

The server also benefits from SSH, especially if it is running a number of services. If
you use port forwarding, otherwise insecure protocols (such as POP) can be encrypted
for secure communication with remote machines. SSH makes it relatively simple to
encrypt different types of communication normally sent insecurely over public networks.

For more information about SSH, see www.openssh.org.

A large number of client and server programs can use the SSH protocol, including many
open source and freely available applications. Several different SSH client versions are
available for almost every major operating system in use today.

Please see the documentation for your host system for an explanation of how to install
and deploy OpenSSH on your host system.

Several SSH clients are also available for non-Linux systems. These include Microsoft
Windows platforms, such as:

e PuTTY: AWindows version of the ssh program. This is provided on the Development
Kit CD, in the folder /host/windows, and at
www.chiark.greenend.org.uk/~sgtatham/putty.

e WinSCP: A graphical version of SCP for windows. This is also provided in
/host/windows, and at winscp.vse.cz/eng.

© 2004 Arcom lIssue E 23

http://www.openssh.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty
http://winscp.vse.cz/eng

Arcom Embedded Linux Secure Shell (SSH)

Using SSH commands

The ssh command

The ssh command enables you to remotely log in to a machine. For example to log in
to the machine ael.example.net, you would enter the following command:

$ ssh ael.example.net

The first time you log in to a machine, a message similar to the following (but with a
different fingerprint) is displayed:

The authenticity of host 'ael.example.net {10.2.4.14)' can't be
established.

RSA key fingerprint is
ef:79:67:58:78:el4:bc:Bazbae2:Ff8:62:Ff8:62:F8:ea:fa:bc

Are you sure you want to continue connecting {yes/no}?

This gives you the opportunity to verify that the machine you are logging into is the
machine you are expecting by confirming that the host’s cryptographic key is correct.
Verify that the fingerprint is correct before typing yes to continue logging in.

You can obtain the host fingerprint of a system by asking the administrator or by logging
in at the console and running the command:

$ ssh-keygen | —f /etc/sshd/ssh_host_key.pub

L\=)?_ l There are likely to be several ssh_host_*key.pub files. Examine them all.

Once you verify the fingerprint of a system, it is written to ~/.ssh/known_hosts, so you
are not asked this question again. If the remote host’s fingerprint changes for any
reason, ssh displays an error message. If, on investigation, you determine that the
change is legitimate, you can edit ~/.ssh/known_hosts to remove the incorrect
fingerprint. For example, the remote operating system may be reinstalled, causing the
SSH server’s host key to change.

After you have accepted the remote system’s fingerprint, you are asked to authenticate
yourself. You normally do this by entering your password. However, there are
alternative authentication methods, such as public key authentication. See Public key
authentication methods, page 26.

The ssh command logs in to the remote machine using the current user name from
your local host. To log in as a different user, for example as the user ‘arcom’, you may
use one of these two command forms:

$ ssh arcom@ael.example.net
$ ssh -l arcom ael.example.net

m* All the commands in the SSH suite accept both these forms for specifying a log
—=>=_ in user. The examples in this manual use the user@host form.

© 2004 Arcom lIssue E 24

Arcom Embedded Linux Secure Shell (SSH)

As well as logging in to a remote machine, ssh can run a command on a remote
machine without the need to log in and run it manually. To do this, append the command
to the ssh command line. For example, to examine the contents of the /bin/ folder on a
remote system you might enter:

$ ssh arcom@ael.example.net Is /bin/

Noa

7« When you use ssh to run a remote command, quote shell meta characters that

é you want to be passed to the remote system rather than processed locally.

The scp command

The scp command is similar to the regular cp command, except that it uses the SSH
protocol and allows for the source or destination file to be located on a remote system.
You can specify a remote file as follows:

user@host:file

The user@host part is the same as for the ssh command, described in the previous
section. If you don’t specify a file, or you give a relative path (i.e. one which doesn’t
start with /), the default is the remote user’s home folder. If you forget the colon (:), you
copy to or from a local file named user@host. This is rarely required.

For example, the following command copies ‘my-file’ to /home/arcom on the remote
system ael.example.net:

$ scp my-file arcom@ael.example.net:

The following command copies the same file to /etc/ on the remote host:
$ scp my-file arcom@ael.example.net:/etc/my-file

To retrieve a remote file, reverse the order of the operands. For example, the following
retrieves /home/arcom/my-file from the remote system:

$ scp arcom@ael.example.net:my-file .

The sftp command

The sftp command behaves like the regular ftp command, except that it uses the SSH
protocol to provide the strong authentication and encryption that regular FTP lacks. You
can specify a user and hostname using the user@host syntax described in the
previous section, for example:

$ sftp arcom@ael.example.net

© 2004 Arcom lIssue E 25

Arcom Embedded Linux Secure Shell (SSH)

Public key authentication methods

In addition to regular password authentication, SSH also offers public key
authentication. Public key authentication works by generating a public/private key pair.
The public part may be passed around freely in order to transfer it to a remote system
running SSH. The private part must remain a secret, since anyone possessing the
private key can log in to any system configured with the public key.

A private key designated for interactive use normally has a pass-phrase that adds an
extra layer of security. However, a private key designated for non-interactive use (such
as in a script on a remote system), does not.

~6;Y. The ssh-agent command enables you to only enter your pass-phrase once per
14~ session. See Further information about SSH, page 27.

Generating keys

Public/private key pairs are generated using the ssh-keygen utility. This utility asks for
a destination (press Enter to accept the default) and a pass-phrase (which may be left
blank). If you accepted the default location, you have a DSA public/private key pair in
~/.ssh/id_dsa and ~/.ssh/id_dsa.pub.

_ ® SSH can also use RSA keys by passing rsa rather than dsa to ssh-keygen. RSA
—>. Keys are stored in id_rsa and id_rsa.pub.

The file id_dsa is your private key and you must keep this safe. Your public key is in
id_dsa.pub. You can copy this to a remote machine and append it to the file
~/.ssh/authorized_keys to enable public key authentication on that host.

Once you have configured the remote host, you can continue to use all the SSH utilities
as normal. The authorized_keys file can also be used to restrict the commands that
may be run when that key is used. This means you can restrict the commands that can
be run by an interactive script (where the key has an empty pass-phrase). See Further
information about SSH, page 27.

© 2004 Arcom lIssue E 26

Arcom Embedded Linux Secure Shell (SSH)

Port forwarding

SSH has the ability to tunnel TCP/IP connections from the local machine to the remote
host and vice-versa. This is useful to provide a secure wrapper around an insecure
protocol.

For example, to create a secure tunnel from the local machine to a mail server running
remotely on port 25, you could enter the following:

$ ssh -L 2525:localhost:25 user@mail.example.net
localhost refers to the local host from the perspective of the remote host. Anyone

connecting to port 2525 on your local host is therefore forwarded through the SSH
tunnel to port 25 on mail.example.net.

You need not use localhost. For example, the following command enables anyone with
access to your local machine to access mail.example.net, which we assume is secured
behind the example.net firewall:

$ ssh -L 2525:mail.example.net:25 firewall.example.net

You can also forward a port on the remote machine to any machine accessible from
your local machine. For example, to tunnel port 2525 on the remote machine to a mail
server on your local network, enter the following:

$ ssh —R 2525:mail.example.net:25 ael.example.net

Anyone connecting to port 2525 on ael.example.net is forwarded to mail.example.net
on your local network.

Further information about SSH

The preceding sections provide simple examples of what you can achieve using SSH.
Further information about using SSH is on the OpenSSH website, at www.openssh.org.

Removing legacy services

The default install of AEL includes telnet and FTP daemons that are made obsolete by
the use of SSH. They remain in the distribution to maintain backwards compatibility.
However, we recommend that you remove them unless you explicitly need them.

You can remove the telnet and FTP servers using the dpkg packaging tool, as follows:
dpkg —r ftpd

dpkg —r telnetd

For more information, see Package management, on the next page.

You can also use tcpd to restrict access to these services by certain IP addresses or
hosts without disabling them completely. Consult the tcpd(8) and host_access(5) man
pages for details.

© 2004 Arcom Issue E 27

http://www.openssh.org/

Arcom Embedded Linux Package management

Package management

A default installation of AEL can contain several optional packages, such as the J9 Java
Virtual Machine, the OpenBSD Secure Shell (SSH), Web and FTP servers. If your
application does not require these and you want to free some space in the Flash, you
may remove some packages. Conversely, if you require a package that is not installed
by default, you can add packages to the board.

AEL uses the dpkg package management system to manage packages on the target
system. An application is typically packaged as a single .deb package file, which can be
installed as described in Adding packages, below.

Alibrary is normally split into two packages, the runtime package libFOO and the
development package libFOO-dev. The libFOO package must be installed on the target
system, while the libFOO-dev package must not. To compile and link applications
against a library, both the library package itself and the development package must also
be present in the host environment.

All of the library runtime and development packages that are included on the
Development Kit CD (even those that are not included in the default target installation)
are installed into the host environment by the installer. If you install a library package
from another source, such as one provided by Arcom technical support, you must install
the runtime and development packages into the host environment yourself. See
Installing additional packages into the host environment, page 33.

You can view a list of packages installed on the target by running the following
command on the target:

$ dpkg -
When you run this command, the following information is displayed:

ii libcé 2.3.1-5

ii bash 2.85b-3

Removing packages

Packages can be removed using dpkg. For example, enter the following to remove the
ftpd package:

dpkg —r ftpd

Adding packages

Additional software components in .deb packages are on the Development Kit CD, in
the /packages folder. To add a package to the target system, follow these steps:

1 Transfer the required package to a temporary folder on the target, for example:

$ scp /mnt/cdrom/packages/ntp/ntpd_4.1.1-1_arm.deb \
root@target.example.net:/tmp

2 Install the package on the target by entering the following:
dpkg —i /tmp/ntpd_4.1.1-1_arm.deb

© 2004 Arcom lIssue E 28

Arcom Embedded Linux The X Window System

The X Window System

AEL makes use of the TinyX server that is designed for embedded systems and makes
use of the Linux frame buffer driver. If your target board has graphics capabilities, it is
already installed with the TinyX server and a small number of other utilities.

You can start the TinyX X server on the primary frame buffer device by running the
command startx.

If you are running on a VGA CRT display device and want to run the TinyX X server at a
different video mode to the board default, you can use the fbset command to set the
mode before running startx. The list of modes available is stored in the file
/etc/fb.modes on the target, and includes a selection of standard VGA modes. For
example, to run X at 800x600 at 75Hz, enter:

fbset 800x600-75
$ startx

If your target board supports a non-CRT device such as an LCD display, please consult
the Quickstart Manual for details about configuring this device.

Window manager

By default, AEL comes installed with the matchbox window manager. The matchbox
window manager is specifically designed to require very few resources. It aims to target
systems with little screen real estate and limited input mechanisms (such as a
touchscreen). To support these aims, all windows remain maximized at all times (unlike
other window managers, which allow you to arbitrarily choose position and size).

AEL does not come supplied with any other window managers. You may, however,
choose to compile and install another window manager. To use a different window
manager, you can set the environment variable X_WINDOW_MANAGER to the full path
to the window manager binary, as follows:

$ export X_WINDOW_MANAGER=/usr/bin/another-wm
$ startx

Using a touchscreen via a TSC1 controller board

Atouchscreen and a TSC1 touchscreen controller board are included in many AEL
Development Kits. If your Development Kit includes these, your target board already
has the TSC1D touchscreen controller daemon software installed. The TinyX X server
in the Development Kit includes an input driver that automatically makes use of the
TSC1D daemon if it is running. You can start the daemon by typing tsc1d & before
launching X.

If you obtained your touchscreen and TSC1 separately from your Development Kit, you
must calibrate them using tsc1cal before you can use the touchscreen.

m* Development Kits that are supplied with a TSC1 are already calibrated.
t\?? However, if you reinstall the system you may need to recalibrate.

© 2004 Arcom lIssue E 29

Arcom Embedded Linux The X window system

To calibrate your touchscreen, follow these steps:
1 Connect the TSC1 controller board to your target board.

In its default configuration, AEL runs a serial log in on ttySO (COM1). We therefore
recommend that you connect the TSC1 controller to ttyS1 (COM2). Some
Development Kits that are supplied with an Industrial Compact Enclosure (ICE)
containing the processor board and the TSC1 controller may use a different serial
port. See the Quickstart Manual for your board for more details.

2 Ensure that the tscld touchscreen daemon is not running by typing:
killall tsc1d

3 Run the touchscreen calibration program tsc1cal.

b The default serial port is always /dev/ttyS1, even if the ICE box is supplied
= with the TSC1 attached to some other port. If you are not using the default
serial port, pass the correct --device /dev/ttySn parameter:

tsc1cal —device /dev/ttyS1 —-generate /etc/tsc1d.conf

4 Follow the on screen instructions by touching the squares as they appear.
When you have finished, tsclcal exits and displays a calibration string. This is a
string of five integers separated by commas. The --generate option also writes
your configuration to the correct location.

The tscld has now been calibrated for your touchscreen. You can start it in the
background by typing tsc1d &, and then run X by typing startx.

For more information on tsc1d and tsc1cal, see the tsc1d README file in the tsc1d
source, which is in /packages/tsc1d on the Development Kit CD.

© 2004 Arcom lIssue E 30

Arcom Embedded Linux Developing software for AEL

Developing software for AEL

To ensure that an application is able to run correctly when installed on a target board,
you must ensure that it is compiled and linked against the libraries that are present on
the target system. This is particularly true when the processor architecture of the target
board differs from the processor architecture of the host system, but is also true if the
processor architecture is the same. The act of compiling for a target system that differs
from the host system is known as cross compilation.

The AEL host environment contains a suite of cross compilers and other tools, as well
as the libraries and headers that are necessary to compile applications for use on AEL.
It also contains various tools that are useful when working with AEL target systems.

Host system requirements

The AEL host environment requires a host Linux distribution that is compatible with the
Linux Standard Base? (LSB) version 1.3. The LSB is an attempt by Linux distribution
vendors to specify a set of basic functionality that is present on any Linux distribution.

Each Linux distribution vendor who supports the LSB provides a package which
ensures that the LSB functionality is present on the system. Many Linux distributions do
not include LSB support in the base installation, so you may need to add it.

b The LSB support package is necessarily tightly coupled with the Linux
= distribution and version. It is therefore important that you install the LSB
package for the exact distribution version you are using as supplied by the
distribution vendor. An LSB support package downloaded from anywhere else is
unlikely to function correctly.

2 .
www.linuxbase.org

© 2004 Arcom lIssue E 31

http://www.linuxbase.org/

Arcom Embedded Linux Developing software for AEL

The distributions confirmed as supporting the Arcom host environment using the LSB
packages supplied by the Linux distribution vendor are listed in the following table.

A
AN Arcom recommend Fedora Core 1 as a host distribution.

N

Distribution Vendor LSB package Notes

RedHat 7.3 (VALHALLA) Red Hat, Inc. redhat-Isb or on CD #3 [0]

RedHat 8.0 (PSYCHE) Red Hat, Inc. redhat-Isb or on CD #3

RedHat 9 (SHRIKE) Red Hat, Inc. redhat-Isb or on CD #3

Fedora Core 1 (YARROW) Fedora Project redhat-Isb or on CD #3 [11, [2]

Fedora Core 2 (TETTNANG) Fedora Project redhat-Isb or on CD #3 [2]

Mandrake Linux 10.0 mandrakesoft Isb on CD #1 [3]
SuSE Linux 9.0 SuSE/Novell Isb or on CD #1 [4]
Debian GNU/Linux 3.0 Debian Isb [5], [6]
(WOODY)

Debian GNU/Linux 'Testing' Debian Isb [6], [7]
(currently SARGE)

Debian GNU/Linux 'Unstable’ Debian Isb [6], [7]
(SID)

The numbers in the Notes column refer to the following information:

[0] Red Hat 7.3 is shipped with version 1.1 of the LSB. It is possible to install the Arcom host environment on this
platform by passing the following additional arguments to the Arcom host environment installation program:
--ignore-Isb-version and --ignore-package-dependencies

[1] Red Hat discontinued their Red Hat Linux product after version 9. In its place they started the Fedora project.
Therefore Fedora Core 1 can be considered the successor to RedHat 9.

[2] You can install Fedora supplied packages (such as the redhat-Isb package) using the yum tool. Simply run the
command "yum install <PACKAGES>". yum requires an active Internet connection.

[3] You can install Mandrakesoft supplied packages (such as the Isb package) using the urpmi tool. Simply run the
command "urpmi <PACKAGES>".

[4] You can install SUSE supplied packages (such as the Isb package) using the yast tool. Simply run the command
"yast --install <PACKAGE>".

[5] Debian GNU/Linux 3.0 requires that the --ignore-required-package-versions argument be passed to the Arcom host
environment installation program.

[6] You can install Debian supplied packages (such as the Isb package) using the apt-get tool. Simply run the command
"apt-get install <PACKAGES>". apt-get requires an active Internet connection.

[7] Debian “Testing” and “Unstable” were known to work at the time of writing (July 2004). However, due to the continual
updates to these distributions, this may change at any given time.

© 2004 Arcom lIssue E 32

http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/
http://www.redhat.com/
ftp://@ftp.redhat.com/pub/redhat/linux/7.3/en/os/i386/RedHat/RPMS/
http://www.redhat.com/docs/manuals/linux/RHL-8.0-Manual/
http://www.redhat.com/
ftp://@ftp.redhat.com/pub/redhat/linux/8.0/en/os/i386/RedHat/RPMS/
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/
http://www.redhat.com/
ftp://@ftp.redhat.com/pub/redhat/linux/9/en/os/i386/RedHat/RPMS/
http://fedora.redhat.com/
http://download.fedora.redhat.com/pub/fedora/linux/core/1/i386/os/Fedora/RPMS/
http://fedora.redhat.com/
http://download.fedora.redhat.com/pub/fedora/linux/core/2/i386/os/Fedora/RPMS/
http://www.mandrakesoft.com/products/10
http://www.mandrakesoft.com/
http://www.suse.com/
ftp://ftp.suse.com/pub/suse/i386/9.0/suse/
http://www.debian.org/releases/woody/
http://www.debian.org/releases/woody/
http://www.debian.org/
http://www.debian.org/releases/testing/
http://www.debian.org/releases/testing/
http://www.debian.org/
http://www.debian.org/releases/unstable
http://www.debian.org/releases/unstable
http://www.debian.org/

Arcom Embedded Linux Developing software for AEL

If your host distribution is not listed in the preceding table, you may still be able to install
the host environment, as your distribution may be derived from one of the distributions
that are listed.

If you are still unable to install the host environment but you know that your chosen
distribution supports the LSB version 1.3, please contact Arcom to discuss support for
your chosen distribution. Alternatively, install a supported distribution that includes
support for the LSB.

The AEL host environment requires up to 150MB of disk space.

Installing the AEL host environment

To install the host environment, mount the CD and run (as root) the script install, which
is located in the top folder of the CD. Pass any options required for your distribution, as
described in the preceding section. For example (assuming your distribution is
configured to mount CDs on /mnt/cdrom):

mount /mnt/cdrom
Imnt/cdrom/install [OPTIONS]

Some distributions are configured by default so that programs cannot be executed from
removable media such as a CD. If so, a permission denied error is displayed when you
enter the above command. In such cases, use the following command:

perl Imnt/cdrom/install

Once you have installed the host environment, you must add the folder /opt/arcom/bin
to your path and the folder /opt/arcom/share/man to your manual path. You can do this
temporarily for the current log in session by running the following commands:

$ export PATH="/opt/arcom/bin:$PATH"
$ export MANPATH="/opt/arcom/share/man:$MANPATH”

Alternatively, you can cause these commands to take effect for all log in sessions for a
particular user by adding them to the file .bash_profile in that user’s home directory.

Installing additional packages into the host environment

When the host environment is installed, all of the library runtime and development
packages that are supplied on the Development Kit CD are installed into it. If you obtain
a library package from some other source, such as Arcom Technical Support, you must
install the runtime and development packages yourself.

This section explains installing packages in the host environment, whilst Package
management, on page 28, explains installing packages in the target device. The
installation into both the host and target environments of applications and binaries that
you have built yourself (i.e. not using packages) is explained later in this section.

Many of the packages you want to install in the host environment are in the form of .deb
packages, suitable for installation on the target device. These must be converted into

© 2004 Arcom lIssue E 33

Arcom Embedded Linux Developing software for AEL

LSB-compliant .rpm packages suitable for installation in the host environment. A small
minority of packages (for example cross compilers) are strictly intended for the host
environment only, and so are supplied directly as LSB .rpm packages.

The host environment contains a tool, ael-cross-rpm, that is used to convert a .deb
package into an LSB-compliant .rpm package. A .deb package ‘foo’ is converted by the
tool into an RPM package ‘Isb-arcom-ARCH-linux-foo’, with the correct metadata for an
LSB package and the correct file system layout for the Arcom host environment.

A .deb package or set of .deb packages can be converted to LSB compliant .rpm
packages by passing them to ael-cross-rpm. To do this, enter:

$ ael-cross-rpm libc6_2.3.1-3_arm.deb libc6-dev_2.3.1-3_arm.deb

When you enter this command, the following is displayed:

libcé 2.3.1-3 arm.deb
libcé-dev _2.3.1-3 arm.deb

You can create two LSB .rpm packages in the current folder by entering:
$ Is *.rpm
When you enter this command, the following is displayed:

1sb-arcom-arm-1linux-1ibc6-2.3.1-3 _noarch.rpm
1sb-arcom-arm-linux-libcé-dev-2_3.1-3.noarch.rpm.

If ael-cross-rpm determines that a .deb package contains no files that would be useful
in the host environment, it does not produce any output for that package.

Once you have created the LSB .rpm packages, you must install them on your host
system. The method for doing this varies between Linux distributions.

On a distribution that uses the RPM package manager, for example Red Hat Linux, you
can install the LSB .rpm packages directly using the rpm tool:

rpm -ivh Isb-arcom-arm-linux-libc6-2.3.1-3.noarch.rpm
When you enter this command, the following is displayed:

Preparing. .. HEEHERREEE R
[100%]
1:1sb-arcom-arm-linux-1ib HEHHHEEEEHHEEEEEHHEEEEEEHHERERIEE [100%]

On distributions that use other package managers you must use another tool to install
the LSB .rpm package. For example, Debian GNU/Linux provides the tool alien that
supports installing LSB .rpm packages:

alien -ik Isb-arcom-arm-linux-libc6-2.3.1-3.noarch.rpm

cannot install a .deb built for AEL directly in your Debian system (or vice-versa).
Doing so could damage your host system.

You must convert the AEL .deb to an LSB RPM using ael-cross-rpm (so that
the meta data and file system layout can be modified to be suitable for the host
rather than target environments) and then install the LSB .rpm package using
alien.

% Like AEL, Debian uses dpkg as its package management tool. However you

© 2004 Arcom lIssue E 34

Arcom Embedded Linux Developing software for AEL

Other host distributions have a similar method for installing LSB packages. For details,
consult the documentation for your host distribution.

Obtaining help

You can view help about many of the utilities provided by the host environment using
the man utility. For example, to get help on the arm-linux-gcc compiler, run the following
command:

$ man arm-linux-gcc

Cross compiling applications and libraries

~s= This section includes a number of examples in which we use the arm-linux

l_-!

\==._ cross compiler. For other boards, substitute the appropriate prefix from the table
below.

Compiling a simple C application is simply a matter of using the cross compiler instead
of the regular compiler:

$ arm-linux-gcc -o example -Wall -g -O2 example.c

Tools available in the host environment

The majority of the cross compilation tools are the same as their native compilation
counterparts, with an additional prefix that specifies the target system. The prefixes for
the various architectures are described in the following table:

Architecture Prefix Example processors
Intel x86 i386-linux- AMD SC520, National Geode GX1
ARM and XScale (little-endian) arm-linux- Intel PXA255

ARM and XScale (big-endian) armbe-linux- Intel IXP425

© 2004 Arcom lIssue E 35

Arcom Embedded Linux Developing software for AEL

The following cross compilation tools are provided:

Tool Description

ar Manage archives (static libraries).

as Assembler.

c++, g++ C++ compiler.

cpp C pre-processor.

gce C compiler.

gdb Debugger.

Id Linker.

nm List symbols from object files.

objcopy Copy and translate object files.

objdump Display information about object files.

ranlib Generate indexes to archives (static libraries).

readelf Display information about ELF files.

size List object file section sizes.

strings Print strings of printable characters from files (usually object files).

strip Remove symbols and sections from object files (usually debugging
information).

Common open source build systems and cross compilation

The majority of open source software available uses configure scripts as part of the
build process. Passing --host=arm-linux on the command line in addition to your
normal options is often all that is required. ‘Host’ in this context refers to the system that
the final application is to run on. Newer configure scripts accept a --target=arm-linux
option as an alternative, as follows:

$./configure --host=arm-linux [other options]

b Not all configure scripts follow this behavior. In particular, build systems not
= generated with the autoconf and automake tools are likely to not behave as
expected. Fortunately, a great many open source projects do use these tools.

© 2004 Arcom lIssue E 36

Arcom Embedded Linux Developing software for AEL

Building libraries

Building libraries is similar to building applications. The libraries must be configured and
built to run on the target board. This means that the --prefix must be /usr, so that
libraries expect to be installed to /usr/lib/. However, the library and headers must also
be installed on the build system in /opt/arcom/TARGET/lib and
lopt/arcom/TARGET/include (where TARGET is the cross compile prefix, such as arm-
linux or i386-linux), so that the cross compiler and linker can use them.

With a standard automake and autoconf build system, this can be achieved by entering:
make install prefix=/opt/arcom/arm-linux

Alternatively, you could install to /tmp/myapp-tmp and move the libraries and headers
into /opt/arcom/TARGET by hand.

Installing applications and libraries on the target

Installing an application or library that uses the automake tool is normally achieved by
calling the install target, as follows:

$ make install

;}f‘; This causes the application or library to be installed into the host file system,
b potentially causing enormous damage to the system.
Consider the consequences of replacing libc on an X86 system with a libc cross
compiled for an ARM system.

Perform the build and install of applications for the target as a non-root user on
the host system, as this can prevent the worst disasters.

Fortunately, automake provides a variable called DESTDIR that is used as the base
folder for installation. DESTDIR is normally an empty string, but you can define it to
install into a temporary folder, as follows:

$ make install DESTDIR=/tmp/target-install

You can now remove from tmp/target-install any files that you do not want to install on
the target, such as documentation and static libraries (*.a), and transfer it to the board:

$ cd /tmpltarget-install

You may also want to use the strip command to remove unnecessary symbols from any
application binaries or libraries:

$ arm-linux-strip --strip-unneeded ./usr/bin/app
$ arm-linux-strip --strip-unneeded ./lib/libtmp.so

© 2004 Arcom lIssue E 37

Arcom Embedded Linux Developing software for AEL

Custom build systems and cross compilation

There are projects that use build systems which differ from the de-facto standard
discussed above. There is no simple recipe for building applications with non-standard
build systems. You must consult build instructions, README files and similar
documentation, study the build system makefiles, and so on.

=%

- '-' The RUTE Linux Tutorial (which is on the Development Kit CDROM) contains
‘%;}, sections about the use of make and makefiles.

You can normally edit the makefile to prefix all references to tools mentioned in Tools
available in the host environment (page 35) with the correct cross compilation prefix. A
makefile often defines variables such as CC and CXX to contain the C and C++
compilers respectively. In general, setting environment variables to override these
before running make meets with some success:

$ CC=arm-linux-gcc CXX=arm-linux-c++ make

You must install to a temporary folder so as not to overwrite your build system’s native
libraries and binaries. A custom build system may not make use of the DESTDIR
variable. Consult any documentation you have and examine the makefile for install
targets or similar.

Cross compilation example

A trivial example application that utilizes a shared library is included on the
Development Kit CD. The two source tarballs are in /examples/c/trivial/trivial-app-
1.0.tar.gz and /examples/c/trivial/libtrivial-1.0.tar.gz. This example uses a standard build
system based on the autoconf, automake and libtool utilities. The procedure is
therefore most relevant to real applications using the same build system.

b The autoconf, automake and libtool utilities are commonly used by Open
= Source projects. They can be found at www.gnu.org/software/autoconf/,
www.gnu.org/software/automake/, and www.gnu.org/software/libtool/,
respectively.

Building the shared library
To build the shared library, follow these steps:

1 Unpack the library distribution using the following commands:

$ tar xzf libtrivial-1.0.tar.gz
$ cd libtrivial-1.0

© 2004 Arcom lIssue E 38

http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/libtool/

Arcom Embedded Linux Developing software for AEL

2 Configure the library as follows:

$./configure --prefix=/usr --host=arm-linux
$ make

rw‘ Note the use of the --host option. For more information about this option,
\=.. see Common open source build systems and cross compilation, page 36.

3 Install the library on the host (build) system by entering the following command:
make install prefix=/opt/arcom/arm-linux

4 Install for the target (this is transferred to the target later), as follows:
$ make install-strip DESTDIR=/tmpl/trivial-app

Building the application
To build the application, follow these steps:

1 Unpack the application distribution:

$ tar xzf trivial-app-1.0.tar.gz
$ cd trivial-app-1.0

2 Configure the application:

$.Iconfigure --prefix=/usr --host=arm-linux
$ make

= option, see Common open source build systems and cross compilation,
page 36.

@ Again, note the use of the --host option. For more information about this
=

3 Install for the target:
$ make install-strip DESTDIR=/tmpl/trivial-app

Installing on the target
To install the application on the target, follow these steps:

1 Generate the tarball to be installed based on the installed files:

$ cd /tmpltrivial-app
$ tar czvf ../trivial-app.tar.gz *
$ cd..

L)

~r—y. For areal application, you may want to remove files that are not required
? on the target (such as documentation) from the temporary folder before
you build the tarball.

© 2004 Arcom lIssue E 39

Arcom Embedded Linux Developing software for AEL

2 Transfer the installation tarball to the target board (named penguin.example.net in
this example) using scp:
$ scp trivial-app.tar.gz root@penguin.example.net:/tmp

3 Enter the following command on the target board (as root):

#cd/
tar xzvf /tmpltrivial-app.tar.gz

4 Update the shared library cache:
Idconfig

5 Run the application:
$ trivial-app

The following message is displayed:

This is a trivial application.
This is a trivial function in a trivial shared library.

Debugging applications on the target

The AEL host environment includes the GNU Debugger (GDB). GDB enables you to
control the execution of your application, examine program state and view the

application code. GDB is a symbolic debugger. This means that you can debug your
application using the function and variable names that were used in the source code.

The main GDB application binary is automatically installed on your host system as part
of the host environment. The recommended method of debugging target applications
using GDB is over an Ethernet connection. To do this you must install a small server
binary, ‘gdbserver’, on the target board. This server is extremely small and consumes
minimal memory. It is provided on the Development Kit CD in the gdbserver package,
which is in the /packages/gdb/ folder. For an explanation of how to install it, see Adding

packages, page 28.

It is possible to run GDB directly on the target board by installing the GDB package from
the Development Kit CD. We do not recommend this because GDB is relatively large
and memory-hungry. Furthermore, you would not benefit from full symbolic debugging
as your application source code is not available on the target.

This section describes how you can use GDB to debug an application running on a
remote target. Please consult the GDB manual for more information about using GDB.
The manual is available on the Development Kit CD in /manuals/gdb.pdf, or from the
GDB website at www.gnu.org/software/gdb.

© 2004 Arcom lIssue E 40

http://www.gnu.org/software/gdb

Arcom Embedded Linux Developing software for AEL

Compiling an application for debugging

Before you can debug a program using the full symbolic information, you must compile
and link the application with full symbolic information. This is done by adding the —g
option to both compile and link commands. For example, to compile a simple hello
world application, enter the following:

$ arm-linux-gcc —g —o hello hello.c

Once compiled, copy the binary to your target system using scp:
$ scp hello root@penguin.example.net:/tmp/hello

It is possible to debug optimized programs with GDB, but you may find that
optimizations such as those performed by the —O2 interfere with GDB’s understanding
of program flow and variable location. We recommend that you disable optimizations in
your application while you are debugging it.

Starting GDB and GDB server

Now that the binary has been compiled with debugging information and copied to the
board, you can start the gdbserver and initiate a GDB session on your target system. To
do this, follow these steps:

1 Start the gdbserver process on your target system, giving a port number to listen
on (9000 in the following example) followed by the program to be debugged:

$ gdbserver :9000 /tmp/hello “hello world”

Arguments can be passed to the application by adding them to the gdbserver
command line. The above command starts gdbserver, which then loads
Itmp/hello, passing the string “hello world” as an argument. It then stops before
running the application and waits for a remote GDB session to be initiated.

2 Initiate a GDB session on the host and pass the application binary as a parameter
to GDB:

$ arm-linux-gdb hello

GDB starts, displaying a banner followed by a (gdb) prompt.

3 Connect to the remote system, assuming it is 192.168.1.4, by typing:
(gdb) target extended-remote 192.168.1.4:9000

This connects to the gdbserver process you started in step 1. The extended-
remote option offers several advantages over the normal remote option, including
the ability to restart the program being debugged without restarting gdbserver.

Once the remote connection is established any of the normal GDB commands
may be used to debug the application, such as setting a breakpoint on the main()
function and continuing:

(gdb) b main

(gdb) €

© 2004 Arcom lIssue E 41

Arcom Embedded Linux Developing software for AEL

Compiling a kernel

Overview

This section explains how to build a new Linux kernel, along with the associated
modules, and install them on your target board.

To cross compile the kernel, you must have the cross compilation environment installed.
For more information, see Installing the AEL host environment, page 33.

An archive containing the patched Linux kernel source tree used in the Development Kit
is installed by the AEL host environment as /opt/arcom/ TARGE T/source/linux-source-
VERSION.tar.gz. Refer to your board’s Quickstart manual for additional board-specific
instructions.

Unpacking and configuring the kernel
The kernel must be recompiled on your host system.

To unpack and configure the kernel, follow these steps:

1 Unpack the source code:

tar zxf /opt/arcom/TARGET/source/linux-source-VERSION.tar.gz
$ cd linux-source-VERSION

The folder linux-source-VERSION is created.

2 Configure your kernel image. You can get a default configuration by running the
following command:

$ make TARGET_config

Where TARGET is the name of the board. Consult your Quickstart Manual to
determine the correct default configuration for your target board.

3 Optional. Tweak the options to your satisfaction using the kernel configuration

tools, once you have a default configuration for your board. For example you can
use the menuconfig tool, as follows:

$ make menuconfig

4 Save your configuration once you have made any changes required, and exit.

© 2004 Arcom lIssue E 42

Arcom Embedded Linux Developing software for AEL

Building the kernel

Once the kernel has been configured it can be built using the ael-kernel-build tool. This
tool builds the kernel and associated modules, as well as any external kernel modules,
as required.

The basic invocation of the ael-kernel-build utility is as follows:
ael-kernel-build [OPTIONS]... <TARGETS>

The main OPTIONS that you can specify when using ael-kernel-build are explained in
the following table:

Option Description

--architecture=ARCH Required. Specifies the processor architecture to build the
kernel for. Use one of the architecture names from the table
below.

--revision=REVISION Specifies the version number to be used in the packages

that are created. This is typically a single integer or a word
combined with an integer, for example ‘1’ or ‘customer.1’.
The numeric part of the revision should be incremented
with each release.

The architectures for which you can build the kernel are listed in the following table:

Processor architecture Architecture name Example processors

Intel x86 i386 AMD SC520, National Geode GX1
ARM and XScale arm Intel PXA255

(little-endian)

ARM and XScale armbe Intel IXP425

(big-endian)

© 2004 Arcom lIssue E 43

Arcom Embedded Linux Developing software for AEL

The possible TARGETS are described in the following table. In most cases, you use
image to build a kernel image and the in-tree modules, and perhaps modules to build
any out-of-tree modules.

Target Description

image Builds a package containing a kernel image and a package
containing the in-tree kernel modules.

clean Cleans the kernel build tree.
modules Builds packages for any external modules for which a
suitable source package is installed in the host

environment.

modules-clean Cleans the build trees for any external modules that have
been built.

For more information on ael-kernel-build and the available options and targets, consult
the ael-kernel-build man page.

Installing the new kernel and modules

Once you have built a new kernel and modules you must install them. The method used
to install a new kernel varies from board to board.

On some boards the Linux kernel image .deb package can be installed using the dpkg
command, as described in Package management, on page 28. If this is true for your
board, the existing kernel image is in the /boot folder on the target. As well as installing
the kernel image, you may also need to update the RedBoot boot script to load the new
kernel. You do this by either editing the boot script itself using the fconfig command
(see page 52) or by changing the alias used by the boot script to specify the kernel
filename.

On other boards the kernel is stored in a FIS partition named ‘kernel'. If this is true for
your board, a partition named ‘kernel’ is in the output from the RedBoot fis list
command (described on page 57). In this case you can update the image with the new
kernel, following the instructions in Managing images in Flash on page 57. The kernel
image to load can be extracted from the Linux image package (where it is called
/boot/vmlinuz-VERSION), or directly from the arch/<ARCH>/boot subfolder of the build
tree (where it is named zImage or bzlmage, depending on the platform).

See your Quickstart Manual for more details.

The Linux modules package can always be installed using the standard package
management tools. See Package management, page 28.

© 2004 Arcom lIssue E 44

Arcom Embedded Linux Developing software for AEL

Common embedded software development tasks

Accessing the physical address space

When developing software for AEL, it is sometimes necessary to access the
processor’s physical address space from within your application. For example, you may
need to tweak memory mapped register settings within the CPU or to access some
external peripheral such as a GPIO pin.

A Linux application may only access the virtual address space that the Linux kernel has
created for it. This virtual address space often does not contain mappings to the
physical regions that you want to use. An application can create a mapping to an
arbitrary physical address by opening the /dev/imem special device file, which provides
access to the entire physical address space, and then performing an mmap() operation
on the file handle.

z For security reasons, the application must be running as root in order to do this.

=

Getting the specifics of this operation correct can be tricky, so we provide a library
(libdevmem) that handles this complexity for you. The library provides a number of
functions:

libdevmem_handle libdevmem open{unsigned long base,
unsigned long length};
int libdevmem close{libdevmem_handle handle};
TYPE t libdevmem read 7¥PE(libdevmem_handle handle,
unsigned long offset);
void libdevmem write 7¥PE{libdevmem handle handle,
unsigned long offset,
TYPE t value);

© 2004 Arcom lIssue E 45

Arcom Embedded Linux Developing software for AEL

The following table explains the functions provided by libdevmem (which are also
described in /opt/arcom/TARGE T/include/libdevmem.h):

Function Description

libdevmem_open Maps a physical address into the current virtual address
space, returning a libdevmem_handle that serves as a
handle onto the mapping.

Takes the physical address to map and the length of the
region to map and returns.

Returns NULL on error and sets errno accordingly.

libdevmem_close Unmaps an existing mapping.
Takes a handle as returned by libdevmem_close.
Returns 0 on success, —1 on error, and sets errno
accordingly.

libdevmem_read_TYPE Reads a value from an offset within a mapping.

Takes a handle and an offset and returns a TYPE_t that is
the value that was read. TYPE may be one of uint8, uint16 or
uint32.

libdevmem_write_TYPE Writes a value to an offset within a mapping.

Takes a handle, an offset and a TYPE_t that is the value to
write. TYPE may be one of uint8, uint16 or uint32.

An application that wishes to use libdevmem must include the libdevmem.h. It must also
include libdevmem when linking:

$ arm-linux-gcc —o application application.o -ldevmem

l:?'f*j II The library is currently available only as a static library.

© 2004 Arcom lIssue E 46

Arcom Embedded Linux Developing software for AEL

Using an Arcom PC/104 I/0 board

AEL comes pre-installed with drivers for a selection of Arcom’s PC/104 1/O boards. The
following AIM104 peripheral boards are supported:

Board Module Device node

AIM104-RELAY8/IN8 aim104-relay.o /dev/arcom/aim104/relay8/{0..7}
AIM104-IN16 aim104-in16.0 /dev/arcom/aim104/in16/{0..7}
AIM104-OUT16 aim104-out16.0 /dev/arcom/aim104/out16/{0..7}
AIM104-1032 aim104-i032.0 /dev/arcom/aim104/i032/{0..7}
AIM104-MULTI-1O aim104.multi-io.o /dev/arcom/aim104/multi-io/{0..7}

= AIM104-COMS8, are supported by the standard 16550 UART driver in the Linux
kernel. These boards can be configured using setserial, as described on page
12.

@ Peripheral boards containing serial ports, such as the AIM104-COM4 and the
—_

The drivers are supplied as kernel modules that must be loaded to access the device.
Each module can support up to eight individual boards that are configured by passing a
list of /0O addresses using the io_base= module parameter. This is a comma-separated
list of addresses. For example, if you have two AIM104-RELAY8/IN8 boards with base
addresses configured as 0x180 and 0x184:

modprobe aim104-relay8 io_base=0x180,0x184

Once the kernel driver has been loaded then the libaim104 library can be used to
access the AIM104 boards. The library provides functions for each of the peripheral
boards. The functions are defined in the C header file arcom/libaim104.h.

Each function takes a file handle obtained by opening the device node listed in the
above table. All functions return O or a positive value on success, and a negative value
on failure. The possible libaim104 error codes are explained in the following table:

Error code Explanation

AIM104_SUCCESS =0 Success. No error occurred.
AIM104_EBAD_CHANNEL =-10 The given channel is invalid.

AIM104_EIO =-20 Low-level I/O error. Check errno for details.
AIM104_ERANGE = -30 The given value was out of range.

© 2004 Arcom lIssue E 47

Arcom Embedded Linux Developing software for AEL

AIM104-RELAYS/IN8

The library libaim104 provides several functions on AIM104-RELAY8/IN8:

int aim184 relay8 enable relays{int fd, int enable});

int aim184 relay8 set all{int fd, unsigned char set);

int aim184 relay8 set masked{int fd, unsigned char mask,
unsigned char set);

int aim184 relay8 inputs{int fd);

int aimi84 relay8 relay status{int fd);

The libaim104 functions on AIM104-RELAY8/IN8 are explained below:

Function Explanation

aim104_relay8_enable_relays Enables all relays if the enable parameter is true.
aim104_relay8_set_all Sets all 8 relays to the state given by set.

aim104_relay8_set_masked Sets all relays selected by the mask parameter to the
state given by the set parameter. A relay is selected if
there is a 1 in the corresponding bit position within
mask.

aim104_relay8_inputs Returns the state of the 8 digital I/O lines as a bit
mask.

aim104_relay8_relay_status Returns the current state of the 8 relays as a bit
mask.

AIM104-IN16

The function provided by the library libaim104 on AIM104-IN16 is:
int aim184 in1é inputs{int fd, int channel};

The function aim104_in16_inputs returns the state of digital I/O lines 0-7 as a bit mask
if channel is O, or lines 8-15 if channel is 1.

AIM104-0OUT16

The functions provided by the library libaim104 on AIM104-OUT16 are:
int aim184 outi1é6 enable outputs{int fd, int enable);
int aimi184 outi1é set all({int fd, int channel,
unsigned char set);

int aim184 out1é6 set masked(int fd, int channel,

unsigned char mask,

unsigned char set);
int aim184 out1é6 output status({int fd, int channel});

When the parameter channel is zero, it selects I/O lines 0-7. When channel is one, it
selects 1/O lines 8-15.

© 2004 Arcom lIssue E 48

Arcom Embedded Linux Developing software for AEL

The functions provided by libaim104 on AIM104-OUT16 are explained below:

Function Explanation

aim104_out16_enable_outputs Enables the outputs if enable is 1, disables
otherwise.

aim104_out16_set_all Sets outputs selected by channel to the state
given as set.

aim104_out16_set_masked Sets outputs on channel selected by the mask

parameter to the state given by the set parameter.
Arelay is selected if there is a 1 in the
corresponding bit position within mask.

aim104_out16_output_status Returns the current status of the outputs selected
by channel.

AIM104-1032
The functions provided by the library libaim104 on AIM104-1032 are:
int aim184 io32 enable outputs{int fd, int enable};
int aim184 io32 set all{int fd, int channel, unsigned char set};
int aim184 i032 inputs{int fd, int channel});
The parameter channel selects 1/O lines 0-7 when zero, 1/O lines 8-15 when one, I/O
lines 16-23 when two and /O lines 24-31 when 3.
The functions provided by libaim104 on AIM104-103 are explained below:
Function Explanation
aim104_io32_enable_outputs Enables the outputs if enable is 1, disables
otherwise.
aim104_io32_set_all Sets the 8 outputs selected by channel to the
state given by set.
aim104_io32_inputs Returns the status of the inputs selected by
channel.
AIM104-MULTI-IO

The functions provided by the library libaim104 on AIM104-MULTI-IO are:
int aim184 multi io inputs{int fd};
int aim184 multi io ADC{int fd, int channel, int single ended};
int aim184 multi io DAC{int fd, int channel,
unsigned short output);

© 2004 Arcom lIssue E 49

Arcom Embedded Linux Developing software for AEL

The functions provided by libaim104 on AIM104-MULTI-IO are explained below:

Function Explanation

aim104_multi_io_inputs Returns the status of the 8 digital I/O lines as a
bit mask.

aim104_multi_io_ADC Returns a value read from one of the ADC

inputs. For an ADC input connected in single
ended mode single_ended must be set to
true/non-zero and channel must be between 0
and 15 inclusive. For an ADC input connected
in differential mode, single_ended must be set
to false/zero and channel must be between 0
and 7 inclusive.

aim104_multi_io_DAC Writes the 12 bit unsigned value (0-4095)
output to DAC channel 0 or 1.

Transferring files to and from the target board via a serial connection

If you want to transfer a relatively small file to or from a target board running Linux
without setting up an Ethernet connection, you may want to do it via the serial line.

If you have many files to transfer or the files are large, we recommend you

= configure an Ethernet connection and use the scp tool as described in Secure
Shell, page 23. A serial connection typically runs at less than 115200Kb per
second, compared with up to 10 or 100Mb for an Ethernet connection.

AEL includes the Irzsz utility, which is capable of performing X-, Y- and Z-modem
transfers over a serial line. The protocol you choose depends on the protocols
supported by your terminal emulator. If possible, use Z-modem in preference to Y-
modem, and use X-modem only if nothing better is available. Z- and Y-modem are
capable of transferring multiple files in one session, while X-modem can only transfer a
single file at a time.

Before transmitting or receiving the file, you must run the appropriate utility on the target
system. The following table describes X-, Y- and Z-modem transfer utilities:

Protocol Receive on the target system Transmit from the target system
Z-modem rz sz [FILES..]

Y-modem rb sb [FILES...]

X-modem rx [FILE] sx [FILE]

To receive files from the host system on the target system, use the rz, rb or rx utilities.
The rz and rb utilities do not take any parameters, while the rx utility requires you to
give the name of the file to be received.

© 2004 Arcom lIssue E 50

Arcom Embedded Linux Developing software for AEL

To transmit files from the target to the host system, use the sz, sb or sx utilities. The sz
and sb utilities can take any number of files to send as parameters, while the sx utility
can only transmit a single file.

Once you have started a utility on the target system, initiate the appropriate type of file
transfer from the terminal emulator on your host. To do this in minicom, press Ctri-A
followed by S to send or Ctrl-A followed by R to receive.

Extracting an image of the on-board Flash

An image can be extracted from the on-board Flash and sent via an Ethernet
connection to a host system using the netcat tool (nc).

,-.,}.f If you intend to download the image to other target devices, remove the SSH

R‘i’*‘f\h cryptographic keys before taking an image. Otherwise, all of your targets will
) have the same private keys. The SSH keys are stored in /etc/ssh in the
following files:

ssh_host_dsa_key
ssh_host_dsa_key.pub
ssh_host _rsa_key
ssh_host_rsa_key.pub
ssh_host_key
ssh_host_key.pub

A unique new set of keys is generated on each board the first time it is booted.

For example, to extract the first Flash partition from a board to a host with IP address
192.168.1.5, follow these steps:

1 Start a netcat process on the host system listening on a port (4000 in this
example) by entering:
$ nc -1 —p 4000 > Flash0.img

2 Extract the Flash image and send it to the host system by running the following on
the target system you want to take an image of:

dd if=/dev/mtd0 | nc 192.168.1.5 4000

If you want to take an image of the entire Flash device, rather than just individual
partitions, you can repeat the above procedure for each Flash partition.

G- A complete list of the Flash partitions on your board is provided in the special
file /proc/mtd.

You can combine the images on the host using the following command:
$ cat Flash0.img Flash1.img ... FlashN.img > Flash.img

Single partitions or images of an entire Flash part can be downloaded onto a target
board, as described in Managing images in Flash, page 57.

© 2004 Arcom lIssue E 51

Arcom Embedded Linux RedBoot

RedBoot

RedBoot is a complete bootstrap environment for embedded systems. Based on the
eCos Hardware Abstraction Layer, RedBoot inherits the eCos qualities of reliability,
compactness, configurability and portability.

The primary function of RedBoot is to bring up the board to the point where control can
be handed off to another operating system, such as Linux. However, RedBoot also
offers the facility to download binary images via a serial or Ethernet connection and to
update the on-board Flash array.

Ethernet download and debug support is included. RedBoot can configure its IP
parameters via BOOTP, DHCP or statically via the Flash configuration block. Images
can be downloaded via Ethernet using TFTP or HTTP, or over a serial connection using
X- or Y-modem.

The RedBoot command line

RedBoot provides an interactive command line interface which allows management of
Flash images, image download, RedBoot configuration, and so on. The command line
interface is accessible via the serial console or as a telnet connection via Ethernet. If,
however, the target has been configured with a boot script that launches an application
or operating system, the Ethernet console is not available and so you must use the
serial console. Any boot script that has been configured can be aborted by pressing
Ctrl-C on the serial console during the early stages of the boot process. Once the board
has dropped to a RedBoot prompt, you may use either the serial console or telnet via
port 9000.

Configuring and using RedBoot

This section explains how to download images, update the Flash and execute
applications and operating systems. For information about the more advanced features
of RedBoot, refer to the eCos Reference manual, which is on the Development Kit CD
in the folder /manuals/.

*;i?'n. You can find out about an individual RedBoot command by typing:
RedBoot> help <command name>

The RedBoot Flash configuration block

RedBoot contains a Flash configuration system that includes information such as a boot
script and networking configuration. The options can be examined and modified using
the fconfig command.

If called with no parameters, fconfig prompts you for each available option in turn.
Alternatively, when entering fconfig, you can include the following parameters:

fconfig [-i] [-1] [-n] [-d] nickname [value]

© 2004 Arcom lIssue E 52

Arcom Embedded Linux RedBoot

The following table explains the parameters you can specify when using fconfig:

Parameter Action

-i Initialize the Flash configuration block to default values.

-l List the settings in the Flash configuration block.

-n Use nicknames rather than full names.
nickname Only act on the named configuration item.
value Value to set to.

The most interesting configuration options are those that allow the use of BOOTP or a
static network configuration to configure the on-board Ethernet and run a script at boot.
Refer to the Quickstart manual for your board for more information about a suitable
script to use.

Aliases

RedBoot can store aliases (simple macros) with the fconfig configuration parameters.
Aliases are defined with the alias command:

RedBoot> alias zimage /boot/vmlinuz
RedBoot> alias cmdline "\"console=ttyS0,115200n8 root=/dev/mtdblock1 ro\""

li‘f"'“i ' Note the use of quotes and backslashes.

Configuring an IP address

You can use fconfig to configure RedBoot with an IP address using either
BOOTP/DHCP, or a static address. In addition, you can use the ip_address command
to specify an IP address from the command line.

When entering the ip_address command, you can specify the following parameters:
ip_address [-b] [-] <local IP address>[/<mask_length>]] [-h <server address>]

These parameters are explained in the following table:

Parameter Action
-b Obtains an IP address via BOOTP.
-l <local IP Sets the local IP address to the address entered. You

address>[/<mask length>] can also enter the network mask length.

- h <server address> Specifies the default server address used by the load
command.

© 2004 Arcom lIssue E 53

Arcom Embedded Linux RedBoot

For example, to configure the static IP address 10.2.2.4 with a network mask of
255.255.0.0 (hence length 16) and default server of 10.2.1.1:

RedBoot> ip_address -1 10.2.2.4/16 —h 10.2.1.1

Alternatively, to configure an IP address via BOOTP or DHCP and override the supplied
server address with 10.2.1.1:

RedBoot> ip_address —b —h 10.2.1.1

When run with no parameters, the ip_address command reports the current IP
configuration:

RedBoot> ip_address

IP: 18.2.40.120/255.255.0.8, Gateway: 16.2.1.1

Default server: 18.2.1.1

Loading images into RAM

An image may be loaded into RAM over the serial line (not recommended for large
images as it is slow), over the Ethernet connection or from a JFFS2 file system in the
on-board Flash. When loading over the serial line, the X- or Y-modem protocol may be
used. When loading via Ethernet, the TFTP or HTTP protocols can be used. Before an
image can be loaded via Ethernet, an IP address must be configured using either the
fconfig or ip_address commands. Before an image can be loaded from a JFFS2 file
system it must be mounted using the mount command, as described in the next
section.

When downloading an image via any method, you must provide an address in RAM
where there is enough free space to contain the image. You can see the free regions of
RAM in the output of the version command. Alternatively, the macro %{FREEMEMLO}
evaluates to the base of free memory. This is useful because it avoids the need to
hardcode addresses in your boot scripts. The following examples use the
%{FREEMEMLO} macro.

Images are loaded into RAM using the load command. When entering the load

command, you can specify the following parameters:
load [-r] [-b <base address>] [-h <hostname>] [-m <method>] <filename>

© 2004 Arcom lIssue E 54

Arcom Embedded Linux RedBoot

These parameters are explained in the following table:

Parameter Action
-r Loads a raw image. The default is to load an SREC format image.
-m <method> Specifies the transfer method. This can be http, tftp, file,

xmodem or ymodem.

-h <host> Specifies the TFTP or HTTP server address, if you are using one
of these methods. The server address given to the ip_address
command, the address supplied by the BOOTP server or the
server address in the Flash configuration block is used (in that
order).

-b <base address> Specifies the address to load the image to.

<filename> The name of the file to load, if you are loading via TFTP or HTTP
or from a file on a JFFS2 file system.

In almost every situation you can use the —r and —b parameters to load a raw image to
a specific address. Loading an SREC format image is beyond the scope of this manual
and is described in the eCos Reference Manual.

For example, the following command loads the raw file application.img from the default
TFTP server to address 0x200000:

RedBoot> load -r -b 0x200000 -m tftp application.img

Download via serial connection

Images are downloaded over the serial line using the X- or Y-modem protocols. You can
initiate a transfer by entering the following command:

RedBoot> load -r —-b %{FREEMEMLO} —m ymodem

Once you have done this, you must start a Y-modem upload from within your serial
terminal emulation program. Under minicom, this is done by pressing Ctrl-A followed by
S.

Download via Ethernet

If you do not have either a web (HTTP) or a TFTP server on your network, refer to your
host system documentation for information about setting one up. If the image you want
to download is small, it may be quicker and easier to perform the download over a serial
connection.

b The following instructions assume that you have placed the image you want to
=_._ download into the root folder of the TFTP or HTTP server, in a file named
image.img.

© 2004 Arcom lIssue E 55

Arcom Embedded Linux RedBoot

To load the image, follow these steps:

1 Configure the network interface if you have not already configured the board with
an IP address. To do this, enter:

RedBoot> ip -1 IP_ADDRESS -h SERVER_IP_ADDRESS

2 Load the image over TFTP or HTTP as follows:

e If using TFTP, enter:

RedBoot> load -r —-b %{FREEMEMLO} —m tftp image.img
e If using HTTP, enter:

RedBoot> load -r —-b %{FREEMEMLO} —m http image.img

Loading from a JFFS2 file system

RedBoot provides a mount command that performs a similar function to the Linux
mount command. Only JFFS2 file systems are currently supported by RedBoot.
However, JFFS2 must still be specified using the —t parameter.

RedBoot> mount —t jffs2 —f <partition>

The —f parameter specifies the FIS partition that contains the JFFS2 file system to
access. You can obtain a list of the currently defined partitions using the fis list
command described below. Only one file system may be mounted at a time. The
umount command unmounts the currently mounted file system:

RedBoot> umount

The load command is used to load files from the file system:
RedBoot> load -r —-b %{FREEMEMLO} —m file /dir/image.img

© 2004 Arcom lIssue E 56

Arcom Embedded Linux RedBoot

Managing images in Flash

Flash is managed under RedBoot using the FIS (Flash Image System) command. This
command has several subcommands that can be used to update the entire Flash from
an image in RAM, or to create and manage images (partitions) within the Flash.

Each FIS partition table entry has the following properties:

Property Description

Name A descriptive name for the image.

Flash Base The offset of the image in Flash.

Memory Base The virtual address of the address in memory that the image
should be loaded to by the fis load command.

Size The total length of the image.

Data Length The length of the data currently stored in the image.

Entry Point The entry point of the image. This is normally equal to the

Flash base (for execute-in-place images) or the memory base.

The following table describes the most commonly used FIS subcommands:

Subcommand Action

init Initializes the FIS partition table.

list Lists the current contents of the FIS partition table.

create Creates a new FIS partition.

load Loads a partition or other region from Flash into RAM.

lock Locks a partition or other region (if available in hardware).
unlock Unlocks a partition or other region (if available in hardware).
write Writes data from RAM to Flash ignoring the any partitions.

Full documentation of the FIS system can be found in the eCos Reference Manual.

Initializing the FIS partition table

Arcom hardware is shipped with a valid FIS partition table. If you have erased the entire
Flash device or want to reinitialize the partition table, you can use the fis init command.

Examining the FIS partition table
The current Flash partition list can be viewed using the fis list command:

RedBoot> fis list

Name FLASH addr Hem addr Length Entry point
FIS directory 0x00000000 Ox00000000 Ox0001FO00 Ox00000000
RedBoot config 0x0001FO00 Ox0001FO00 Ox00001000 Ox00000000

© 2004 Arcom lIssue E 57

Arcom Embedded Linux

RedBoot

Creating a new FIS partition table entry

Images are created in the FIS table using the fis create command. When entering this
command, you can specify the following parameters:

fis create -b <memory base> -| <image length> [-s <data length>] [-f <flash
address>] [-e <entry point>] [-r <ram address>] [-n] <name>

The following table explains the parameters you can specify when using the fis create

command:
Parameter

-b <memory base address>

-I <image length>

-s <data length>

-f <flash address>

-e <entry point>

-r <ram address>

<name>

© 2004 Arcom Issue E

Explanation

The address in memory of the image to write to Flash.
This defaults to the last image loaded by the load
command.

The length of the image in Flash. This defaults to the
length of an existing image with the same name or to the
size of the last image loaded with the load command
(rounded up to a whole erase block).

This corresponds to the Size parameter described on
page 57.

The length of the data stored in this image, which
defaults to the length of the last image loaded with the
load command (rounded up to a whole erase block).

This corresponds to the Data Length parameter
described on page 57.

The offset in Flash where this image resides. FIS
defaults to trying any region of unallocated Flash large
enough for the image being created.

This corresponds to the Flash Base parameter
described on page 57.

The entry point of this image, which defaults to the base
address of the last image loaded with the load
command.

This corresponds to the Entry Point parameter
described on page 57.

The address this image is to be loaded to. This defaults
to the address given by -b.

This corresponds to the Memory Base parameter
described on page 57.

If given, fis create only updates the image table and not
the image itself.

The name of the image.

58

Arcom Embedded Linux RedBoot

For example, the following command creates an image table entry named ‘application’:
RedBoot> fis create -f 0x00002000 -l 0xfe000 -b 0x200000 -e 0x200000 -n application

This does not update the image itself. The image resides from offset 0x00002000 to
0x00100000 in Flash and has a memory address and entry point of 0x200000.

More commonly, only the —f and —I options are required. For example to create an
image named ‘kernel’ at offset 0x200000 in Flash with length 0x100000.

RedBoot> fis create -f 0x200000 -I 0x0x100000 kernel

The image data and other parameters are taken from the preceding load command.

Updating a single FIS image

Once the image has been loaded into RAM you can use the fis create command to
update it. The location of the image in RAM and the size is remembered from the last
load command. For example, to update a partition named ‘filesystem’, enter the
following (assuming you have already loaded the image into RAM as described
previously):

RedBoot> fis create filesystem

Loading a Flash image into RAM

An image that is stored in the Flash can be loaded into RAM using the fis load
command. By default the image is loaded to the RAM address stored in the partition
table entry (supplied by the —r or —b parameters to fis create). The RAM address can
be overridden using the —b parameter. For example, to load the image named ‘kernel’
into RAM at the address given by the Memory Base property in the partition table entry:

RedBoot> fis load kernel

To load the image named ‘kernel’ to the base of available memory instead of the
address stored in the partition table:

RedBoot> fis load —b %{FREEMEMLO} kernel

Unlocking the Flash

Some Flash devices require the Flash to be unlocked before writing. The fis unlock
command is therefore provided on boards with these devices. This command takes
either a Flash offset to start unlocking from (using the —f parameter) and a length in
bytes to unlock (using the —I parameter), or the name of an existing Flash image to

unlock.

To unlock the entire Flash enter the following (where FLASH_SIZE is the size in bytes
of the Flash device):

RedBoot> fis unlock —f 0x0 —| <FLASH_SIZE>

To unlock a FIS partition named ‘filesystem’:
RedBoot> fis unlock filesystem

© 2004 Arcom lIssue E 59

Arcom Embedded Linux RedBoot

Updating the entire Flash

As well as updating individual portions of the Flash, it may also be desirable to reload
the entire Flash array, for example to reload the Flash image the board shipped with.

To update the entire Flash you must first load the image into RAM as described in the
section Loading images into RAM on page 54. Once the image is in RAM you may
need to unlock the Flash, as described above, before using the fis write command to
write the image into Flash.

RedBoot> load -r —b %{FREEMEMLO} flash.img
RedBoot> fis unlock —f 0 —| <FLASH_SIZE>
RedBoot> fis write —f 0x0 —b %{FREEMEMLO} —| <FLASH_SIZE>

FLASH_SIZE is the size of the Flash in bytes. For an F16 board this would be
0x1000000.

Executing an image

There are two commands that can be used to execute an application or another
operating system under RedBoot. They are go and exec. Typically the go command is
used to execute an application while exec is primarily designed to launch Linux.

go
The go command jumps directly to the supplied virtual address. If no address is given,
it either jumps to the entry address of the most recently loaded image (which could be
specified by the FIS table entry), or it may default to the load address of the image.

The MMU is left enabled and set up and the processor is left in privileged mode. For
example, if your application binary is loaded and linked to run at virtual address
0x200000, the following command jumps to the application:

RedBoot> go 0x200000

At this point, control is transferred directly to your application at 0x200000. The
application may choose to continue using the existing MMU settings or may tear down
the current configuration and reinitialize using the desired options.

exec

The exec command disables the MMU before jumping to the physical address supplied.
The primary purpose of this command is to execute a Linux kernel image, but it could
be used to launch any application that had been designed to be launched in this way.

When entering the exec command, you can specify the following parameters:
exec [-b <virtual address>] [-l <length>] [-c “command line”’] [<entry point>]

© 2004 Arcom lIssue E 60

Arcom Embedded Linux RedBoot

These parameters are explained in the following table:

Parameter Action

-b <virtual address> The virtual base address of the image. This defaults to the
base address of the last loaded image.

-l <length> The length of the image, in bytes. This defaults to the length
of the last image loaded.

-c “command line” The command line to pass to Linux (or the application).

<entry point> The physical address of the entry point of the application.

© 2004 Arcom lIssue E 61

Arcom Embedded Linux Appendix A - Contacting Arcom

Appendix A - Contacting Arcom

Arcom sales

Arcom’s sales team is always available to assist you in choosing the board that best
meets your requirements. Contact your local sales office or hotline.

Sales office US Sales office Europe

Arcom Arcom

7500W 161% Street Clifton Road

Overland Park Cambridge

Kansas CB1 7EA

66085 UK

USA Tel: 01223 411 200
Fax: 01223 410 457

Tel: 913 549 1000 E-mail: euro-sales@arcom.com

Fax: 913 549 1002

E-mail: us-sales@arcom.com

Full information about all Arcom products is available on our Web site at www.arcom.com.

b While Arcom’s sales team can assist you in making your decision, the final
=... choice of boards or systems is solely and wholly the responsibility of the buyer.

Arcom’s entire liability in respect of the boards or systems is as set out in
Arcom’s standard terms and conditions of sale. If you intend to write your own
low level software, you can start with the source code on the disk supplied. This
is example code only to illustrate use on Arcom’s products. It has not been
commercially tested. No warranty is made in respect of this code and Arcom
shall incur no liability whatsoever or howsoever arising from any use made of
the code.

Technical support

Arcom has a team of technical support engineers who can provide assistance if you
have any problems with your board.

Technical support US Technical support Europe

Tel: 9135491010 Tel: +44 (0)1223 412 428

Fax: 913 549 1001 Fax: +44 (0)1223 403 409
E-mail: us-support@arcom.com E-mail: euro-support@arcom.com

© 2004 Arcom lIssue E 62

mailto:us-sales@arcom.com
mailto:euro-sales@arcom.com
http://www.arcom.com/
mailto:us-support@arcom.com
mailto:euro-support@arcom.com

Arcom Embedded Linux Appendix B - Software sources

Appendix B - Software sources

The source for a component consists of the following:

e An upstream source tarball named PACKAGE_VERSION.orig.tar.gz (where
VERSION is the upstream version number).

e A patch containing Arcom’s modifications named PACKAGE _VERSION-
REVISION.diff.gz (where REVISION is Arcom’s revision of the component).

¥ A small number of packages do not include a patch as there are no
% modifications to upstream. This is common when Arcom is the upstream author.

Source and binaries for a given component can normally be found on the Development
Kit CD, in the folder /packages/PACKAGE/. The file /[packages/index.html contains an
index of all of the packages available on the Development Kit.

Source code to any open source components of AEL that are not included on the CD
can be supplied by Arcom on request.

© 2004 Arcom lIssue E 63

Arcom Embedded Linux Appendix C - Reference information

Appendix C - Reference information

Sources of further information are listed below:

Information Where found

General Linux information www.linux.org

Linux kernel www.kernel.org

ARM (and XScale) Linux kernel www.arm.linux.org.uk

GNU GCC www.gnu.org/software/gcc

Linux documentation project www.tldp.org

Linux Standard Base project www.linuxbase.org

The BSD license www.opensource.org/licenses/bsd-
license.html

GNU General Public License (GPL) www.gnu.org/copyleft/gpl.html

GNU Lesser General Public License (LGPL) www.gnu.org/copyleft/Igpl.html

The MIT license www.opensource.org/licenses/mit-
license.html

RUTE: The Rute user’s tutorial and exposition http://rute.sourceforge.net

eCos and RedBoot http://sources.redhat.com/ecos/docs-latest

http://sources.redhat.com/ecos/docs-
latest/ref/redboot.html

© 2004 Arcom lIssue E 64

http://www.linux.org/
http://www.kernel.org/
http://www.arm.linux.org.uk/
http://www.gnu.org/software/gcc
http://www.tldp.org/
http://www.linuxbase.org/
http://www.opensource.org/licenses/bsd-license.html
http://www.opensource.org/licenses/bsd-license.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/lgpl.html
http://www.opensource.org/licenses/mit-license.html
http://www.opensource.org/licenses/mit-license.html
http://rute.sourceforge.net/
http://sources.redhat.com/ecos/docs-latest
http://sources.redhat.com/ecos/docs-latest/ref/redboot.html
http://sources.redhat.com/ecos/docs-latest/ref/redboot.html

Arcom Embedded Linux Appendix D - Acronyms and abbreviations

Appendix D - Acronyms and abbreviations

AEL Arcom Embedded Linux

BASH Bourne Again SHell

BOOTP BOOTstrap Protocol

BSD Berkeley Software Design

COM Communication port

CPU Central Processing Unit (PXA255)

CMOS Complementary Metal Oxide Semiconductor
DHCP Dynamic Host Configuration Protocol

FIS Flash Image System

FTP File Transfer Protocol

GCC GNU Compiler Collection

GDB GNU DeBugger

GPIO General Purpose Input/Output

GPL General Public License

HTTP Hyper Text Transfer Protocol

ICE In-Circuit-Emulator

10 Input/Output

IPSEC IP SECurity

IPV4 Internet Protocol Version 4

IRQ Interrupt ReQuest line

JFFS2 Journaling Flash File System 2

LCD Liquid Crystal Display

LGPL Lesser General Public License

LSB Linux Standard Base

(O] Operating System

RAM Random Access Memory

RTC Real Time Clock

RUTE Rute Users Tutorial and Exposition

SBC Single Board Computer

SDRAM Synchronous Dynamic Random Access Memory
SRAM Static Random Access Memory

SSH Secure SHell

SSID Service Set |IDentifier

TCP/IP Transmission Control Protocol/Internet Protocol
TFTP Trivial File Transfer Protocol

TSCA1 TouchScreen Controller 1

UART Universal Asynchronous Receiver / Transmitter
USB Universal Serial Bus

VGA Video Graphics Adapter, display resolution 640 x 480 pixels
WEP Wired Equivalent Privacy

WLAN Wireless Local Area Network

© 2004 Arcom lIssue E 65

Arcom Embedded Linux

Index

A

abbreviations - 65
acronyms - 65
ports - 13
additional functionality - 5
address - 16, 53, 60
image, loading - 55
space - 45
static - 53
TFTP - 55
alias - 53
modules - 21
anti-static - 6
applications
building - 39
compiling - 41
installing - 37, 39
run at boot - 16
Arcom Embedded Linux, configuring - 12
authorized keys - 26
automake - 37

configuration
IP - 53
options - 53
contact details - 62
contents - 5
copyright - 2
cross compiling - 31, 35
example - 38
tools - 35

B

baud - 14
base rate - 13
binaries - 63
boards supported - 47
boot - 14, 18
loading modules automatically at - 21
BOOTP - 53
build systems, non-standard - 38
building
applications - 5, 39
kernel - 43
libraries - 37
shared libraries - 38

D

data length - 58
deb packages - 34
debian - 32
debugging - 40
development
kit contents - 9
packages - 33
device driver - 20, 21
DHCP - 16, 18
disclaimer - 2
disk space - 33
documents - 7
downloading
images - 54
dpkg - 34
packaging tool - 27
drivers - 47

C
calibration - 30
COM - 13

compiling kernel - 42
components - 5

© 2004 Arcom Issue E

E

encryption - 23
entry point - 57, 58, 61
ethernet

configuration - 16
external module - 20, 21
extracting Flash images - 51

F

fconfig - 52

file system - 10
journaling Flash - 10
RAM - 11

66

Arcom Embedded Linux

files
receiving - 50
transferring - 50
transmitting - 51
fingerprint - 24
FIS - 57
partition - 56
Flash - 52
address - 58
base - 57
file system - 10
Image System - 57
images, extracting - 51
images, updating - 59
partition - 10
unlocking - 59
updating - 52, 60
RedBoot - 52
footprint - 5

installing
applications - 39
kernel - 44
module - 44
on target - 37
interface
bringing up at boot - 18
configure - 18
configuring - 18
name - 17
P
address - 16, 53
configuration - 53
IPSEC - 20
IRQ - 13

G

GDB - See GNU debugger
gdbserver - 41
GNU debugger - 40
commands - 41
starting - 41

J

JFFS2 - 10
journaling - 10

H

handling - 6
help - 35
host
environment, installing - 33
fingerprint - 24
local - 27
name - 18
remote - 27
requirements - 31
hostname - 18
HTTP - 55

K

kernel - 20, 21
building - 43
compiling - 42
configuring - 42
installing - 44
unpacking - 42

key
authentication - 26
authorized - 26
pairs - 26
rsa - 26
shared - 19

keyboard mapping - 12

iface - 16

ifconfig - 16

image
address - 58, 61
creating - 58
length - 58, 61
properties - 57

images
downloading - 52, 54
extracting - 51
updating - 57, 59

implementation - 5

© 2004 Arcom Issue E

L

legacy services - 27
libaim104 - 47
library - 47
building - 37
installing - 37
packages - 28, 33
shared, building - 38
licensing - 6
Linux - 7
Standard Base - 31
load file name - 55
loading - 56
local host - 27
login - 24
log in session, removing - 14
LSB - See Linux Standard Base

67

Arcom Embedded Linux

makefiles - 38
man utility - 35
manual configuration - 18
mapping - 12
mask - 53
matchbox window manager - 29
memory base - 57
modems - 50
modinfo - 21
modprobe - 20
configuring - 21
modules
alias - 21
automatic loading - 21
installing - 44
kernel - 20
loading - 20
parameters - 21
removing - 21
mount - 56

ports
serial - 12, 30
tunnel - 27
private key - 26
prompts - 8
public key - 26

N

net mask length - 53

network
configuration - 16
identifier - 19

0]

open source - 36
optimized programs - 41

R

radio channel - 19
RAM - 11
recovery - 22
RedBoot - 52, 60
aliases - 53
commands - 52
configuring - 52, 53
remote
files - 25
host - 27
login - 24
removable media - 33
repair - 22
route - 16
rom packages - 34
installing - 34
rsa keys - 26
run automatically - 16
runlevel - 15
runtime packages - 33

P
packages
adding - 28
converting - 34
deb - 34
files, installing - 28
installing - 33
managing - 28
removing - 28
rom - 34
packaging - 6
parameters, module - 21
partitions - 10
passwords - 12
PC/104 - 47

peripheral boards - 47
physical address space - 45
port forwarding - 27

© 2004 Arcom Issue E

S

scp command - 25
secure shell - 23, 25
serial

connection - 50, 55

ports - 12, 14, 30
servers, removing - 27
service start, stop - 15
setserial - 12
sftp command - 25
shared

keys - 19

library, building - 38
single user mode - 22
size parameter - 11
software

developing - 31

sources - 63
source code - 63
SREC - 55

SSH - See secure shell
ssh command - 24
SSID - 19

Arcom Embedded Linux

static - 6

address - 53

configuration - 18
storage - 6
supervisor mode - 60
support, technical - 62
symbols

removing - 37
system recovery - 22

trademarks - 2
TSC1 - 29
ttySO - 14
tunnel - 27

T

target, installing applications on - 39
tcpd - 27
technical support - 62
TFTP - 55
TinyX server - 29
tools, cross compilation - 35
touchscreen - 29
calibrating - 30

© 2004 Arcom Issue E

U

UART - 13
unlocking Flash - 59
updating Flash - 52

w

warranty - 2
window manager - 29
Wired Equivalent Privacy - 19
wireless
network, connecting - 19

69

	Arcom Embedded Linux Technical Manual
	Contents
	Introduction
	Handling your board safely
	Anti-static handling
	Packaging

	About this manual
	Conventions
	Symbols
	Typographical conventions

	Development Kit CD contents
	File system layout
	Journaling Flash file system
	RAM file system

	Configuring AEL
	Default passwords
	Keyboard mapping
	Serial port configuration
	Configuring serial ports using setserial
	Configuring a new port to an additional serial board
	Automatically loading the serial port configuration on boot
	Removing log in session from ttyS0

	System startup scripts
	Making an application run automatically at boot
	Network configuration
	IP address configuration
	Statically configuring an interface
	Manually configuring an interface
	Configuring an interface using DHCP
	Automatically bringing up an interface on boot
	Hostname

	Wireless network configuration
	Configuring the wireless network device
	Example configuration

	IPSEC
	Configuring and loading kernel modules
	Passing parameters to modules
	Configuring modprobe
	Automatically loading modules at boot time
	Removing kernel modules

	System recovery and single user mode

	Secure Shell (SSH)
	Introduction to SSH
	Using SSH commands
	The ssh command
	The scp command
	The sftp command

	Public key authentication methods
	Generating keys
	Port forwarding

	Further information about SSH
	Removing legacy services

	Package management
	Removing packages
	Adding packages

	The X window system
	Window manager
	Using a touchscreen via a TSC1 controller board

	Developing software for AEL
	Host system requirements
	Installing the AEL host environment
	Installing additional packages into the host environment
	Obtaining help
	Cross compiling applications and libraries
	Tools available in the host environment
	Common open source build systems and cross compilation
	Building libraries
	Installing applications and libraries on the target
	Custom build systems and cross compilation

	Cross compilation example
	Building the shared library
	Building the application
	Installing on the target

	Debugging applications on the target
	Compiling an application for debugging
	Starting GDB and GDB server

	Compiling a kernel
	Overview
	Unpacking and configuring the kernel
	Building the kernel
	Installing the new kernel and modules

	Common embedded software development tasks
	Accessing the physical address space
	Using an Arcom PC/104 I/O board
	AIM104-RELAY8/IN8
	AIM104-IN16
	AIM104-OUT16
	AIM104-IO32
	AIM104-MULTI-IO
	Transferring files to and from the target board via a serial connection
	Extracting an image of the on-board Flash

	RedBoot
	The RedBoot command line
	Configuring and using RedBoot
	The RedBoot Flash configuration block
	Aliases
	Configuring an IP address

	Loading images into RAM
	Download via serial connection
	Download via Ethernet
	Loading from a JFFS2 file system

	Managing images in Flash
	Initializing the FIS partition table
	Examining the FIS partition table
	Creating a new FIS partition table entry
	Updating a single FIS image
	Loading a Flash image into RAM
	Unlocking the Flash
	Updating the entire Flash

	Executing an image

	Appendix A – Contacting Arcom
	Appendix B - Software sources
	Appendix C – Reference information
	Appendix D - Acronyms and abbreviations
	Index

