

PEGASUS
Embedded Linux with JavaTM

Technology

Technical Manual

Product Information

Full information about other Arcom products is available by contacting our Website at:
www.arcomcontrols.com

Useful Contact Information

Customer Support US Customer Support Europe
Tel: 913 549 1000
Fax: 913 549 1001
E-mail: support@arcomcontrols.com

Tel: +44 (0)1223 412 428
Fax: +44 (0)1223 403 409
E-mail: support@arcom.co.uk

Sales offices Sales hotlines

United States:
Arcom Control Systems Inc
7500 West 161st Street
Stilwell, KS 66085, USA
Tel: 913 549 1000
Fax: 913 549 1002

E-mail:
icpsales@arcomcontrols.com

United Kingdom:
Arcom Control Systems Ltd
Clifton Road
Cambridge CB1 7EA, UK
Tel: 01223 411 200
Fax: 01223 410 457

E-mail:
sales@arcom.co.uk

Belgium:
Groen Nummer:
Tel: 0800 7 3192
Fax: 0800 7 3191

France:
Numero Vert:
Tel: 0800 90 84 06
Fax: 0800 90 84 12

Germany:
Kostenlose Infoline:
Tel: 08001 824 511
Fax: 08001 824 512

Netherlands:
Gratis Nummer:
Tel: 0800 0221136
Fax: 0800 0221148

Italy:
Numero Verde:
Tel: 0800 790841
Fax: 0800 780841

Whilst Arcom’s sales team is always available to assist you in making your decision, the final
choice of boards or systems is solely and wholly the responsibility of the buyer. Arcom’s entire
liability in respect of the boards or systems is as set out in Arcom’s standard terms and
conditions of sale.

If you intend to write your own low level software, you can start with the source code on the
disk, which is supplied. This is example code only to illustrate use on Arcom’s products. It has
not been commercially tested. No warranty is made in respect of this code and Arcom shall
incur no liability whatsoever or howsoever arising from any use made of the code.

© 2002 Arcom Control Systems
Arcom Control Systems is a subsidiary of Spectris plc
All trademarks recognized.

Arcom Control Systems Ltd
operate a company-wide quality
management system which has

been certified by the British
Standards Institution (BSI) as
compliant with ISO9001:1994

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 1

Contents
Revision History ... 2
Preface: ... 3

Disclaimer... 3
Anti-Static Handling .. 3
Packaging... 3
Technical Support... 3

Important - Please Read... 4
Licensing .. 4
WebSphere Studio Device Developer Tools and WebSphere Micro Environment Runtime
License ... 4
OpenSSH License .. 4
GCJ Java Runtime License... 4
Trademarks and Attributions ... 5

Overview ... 6
File System Layout... 7
Boot Times.. 7
BIOS Settings ... 7
Configuration files and boot scripts ... 8

Making an Application Run Automatically at Boot ... 9
Arcom Embedded Linux with Java Technology Development Kit CDROM Contents 10
Installation .. 11

Installing on a Headless System ... 11
Installing on a Headed System (With additional PC/104 VGA board) 12
Using the Development Kit CD as a Rescue Disk ... 12
File System... 13

Installing or Uninstalling Components ... 15
Removing Components from an Already Installed System.. 15
Adding Components to an Already Installed System... 15

Utilities .. 16
Eraseall... 16
Flashboot.. 16

Bypassing the Flash Boot Loader... 18
Using Secure Shell (SSH) .. 19

Introduction to SSH... 19
Examples of SSH Commands... 19

Compiling a Kernel... 23
Installing Applications on the Flash File System.. 24

Java Overview .. 25
Arcom Embedded Linux and Java .. 25
Alternative Class Libraries .. 25

Installing IBM WebSphere Device Developer IDE .. 25
Building and Running Applications Using IBM WSDD .. 29

Adding a Class to Your Application ... 33
Building and Running Your Application ... 35
Creating a HelloWorld.jxe ... 37
Test HelloWorld.jxe... 40
Running the JXE on the Target... 40

GCJ.. 41
Advantage of Using GCJ .. 41
Disadvantages of Using GCJ .. 41
Installing GCC on the Host System... 41
GCJ Examples.. 42

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 2

Running the Application on the Target ... 42
Debugging GCJ Applications. ... 42
Notes on Using Cygnus Native Interface (CNI) ... 43

Appendix A - Sources for the Software Contained in Arcom Embedded Linux................. 44
Appendix B - Useful Web Links... 47
Frequently Asked Questions ... 48

Revision History
Manual AEL Revision Date Comments
Issue A V2 Iss3 19 June 2002 First full release of manual

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 3

Preface:

Disclaimer
The information in this manual has been carefully checked and is believed to be
accurate. Arcom Control Systems assumes no responsibility for any infringement of
patents or other rights of third parties that may result from its use.

Arcom Control Systems assumes no responsibility for any inaccuracies that may be
contained in this document. Arcom Control Systems makes no commitment to update or
keep current the information contained in this manual.

Arcom Control Systems reserves the right to make improvements to this document
and/or product at any time and without notice.

Anti-Static Handling
This development kit contains CMOS devices, which could be damaged in the event of
static electricity being discharged through them. At all times, please observe anti-static
precautions when handling boards. This includes storing boards in appropriate anti-
static packaging and wearing a wrist strap when handling boards.

Packaging
Please ensure that should a board need to be returned to Arcom Control Systems, it is
adequately packed, preferably in the original packing material.

Technical Support
Arcom Control Systems has a team of technical support engineers who will be able to
provide assistance if you have any problems with this product. Please contact :

US support@arcomcontrols.com Tel +1 913 549 1000
Europe support@arcom.co.uk Tel +44(0)1223 412 428

All technical support relating to the IBM WSDD 4.0 development environment should be
directed to Arcom Control Systems.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 4

Important - Please Read

Licensing
The Arcom Embedded Linux with Java Technology Development Kit contains
components licensed from different sources. Some of these are open source licenses.
Under certain circumstances you may be required to release source code to any
modifications you have made to these modules if you further distribute them. Please
consult Appendix A and the /Reference/Licenses directory on the CD to ensure
you are familiar with the requirements of each license.

WebSphere Studio Device Developer Tools and WebSphere Micro
Environment Runtime License
This Arcom Embedded Linux with Java Technology Development Kit is supplied with a
licensed copy of the ‘Individual Package’ version of the IBM WebSphere Studio Device
Developer development tools. It also includes a runtime license for the IBM WebSphere
Micro Environment which includes the J9 Java Virtual Machine and Class Libraries
(including J2ME configurations and profiles as well as custom configurations,
MicroView, IBM Service Management Framework, Bare Metal Graphics, P3ML, Flash
Manager and the runtime framework of the IBM Component Distribution System.)
Products developed using the WebSphere Studio Device Developer tools are subject to
a license fee and an optional support agreement. Please contact Arcom for more
information and all related technical support issues.

Please review the license documents included on the Development Kit CD before using
this Development Kit:

/Licenses/WSDD.txt

OpenSSH License
OpenSSH is not covered by any restrictive license. It can be used for any and all
purposes, and that explicitly includes commercial use. The license for OpenSSH is
included in the distribution.

GCJ Java Runtime License
The Arcom Embedded Linux with Java Technology Development Kit contains the GNU
GCJ Java run time libraries.

The libgcj library is licensed under the terms of the GNU General Public License
(/Licenses/GPL.txt on the CD), with this special exception:

 As a special exception, if you link this library with other files
 to produce an executable, this library does not by itself cause
 the resulting executable to be covered by the GNU General Public
 License. This exception does not however invalidate any other
 reasons why the executable file might be covered by the GNU
 General Public License.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 5

Trademarks and Attributions
Linux is a registered trademark of Linus Torvalds.

Java and all Java-based trademarks are trademarks of Sun Microsystems in the United
States, other countries or both.

WebSphere is a registered trademark of IBM Corporation in the United States and other
countries.

Red HatTM is a registered trademark of Red Hat, Inc. This product contains copies of the
Red Hat Linux v7.2 installation CDROMs which are not a product of Red Hat, Inc. and
are not endorsed by Red Hat, Inc. They are a product of Arcom Control Systems and
we have no relationship with Red Hat, Inc. The CDs are identical in every respect to a
standard Red Hat Linux v7.2 CD set.

All other trademarks and copyrights referred to are the property of their respective
owners.

This product includes software developed by the University of California, Berkeley and
its contributors.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 6

Overview
Arcom’s Embedded Linux is a standard Linux distribution specially reduced to fit on the
on-board flash array of the PEGASUS PC/104 single board computer. Key software
includes

• Linux Kernel 2.4.18
• GNU C library 2.2.4
• JFFS2 (compressed Journaling Flash File System) installed on the onboard flash

array
• THTTPD webserver version 2.20c
• Net kit version 0.17 FTP and telnet servers and clients
• Bourne Again Shell (BASH) version 2.05
• OpenSSH (Secure telnet replacement) version 3.1p1
• IBM J9 version 1.5 with jclMax runtime
• And many other standard Linux utilities

This development kit is based on Arcom’s Embedded Linux with the IBM J9 Java Virtual
Machine and class libraries included in the standard distribution. The core of IBM
WebSphere Device Developer 4.0 IDE is included on the development kit CD to enable
Java application development on a host system.

Note: Arcom Embedded Linux is a standard Linux distribution optimized for embedded
systems. It is based upon the standard Linux kernel and user space tools. Arcom
provide free first line technical support for this product.

This manual provides information about the specifics of the Arcom Embedded Linux
distribution as well as tutorials on the key technologies featured. The Linux RUTE
manual (Manual/rute.pdf on the CD-ROM) contains a much more general overview
of how to use a Linux system. There are also links to several useful websites in
“Appendix B - Useful Web Links”.

Note: It is not intended that the PEGASUS board be used to build applications. It is
recommended that you design and build applications on a alternate host system and
download applications to the PEGASUS target system. Arcom Control Systems
suggests using a host system with an installation of Red Hat 7.2.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 7

File System Layout
The entire Linux file system is spread across 3 separate partitions for added data
security.

Mount
Point

Location File
System

Initial
Mount Type

Size

/ Flash partition 3 jffs2 Read Only 14 Mbytes
/var Flash partition 2 jffs2 Read/Write 1.25 Mbytes
/var/tmp RAM tmpfs Read/Write Dynamic up to a

(configurable) 4 Mbyte
limit

 The onboard flash partitions are positioned as follows in the on-board flash array

0 640 Kbytes 2 Mbyte 16 Mbyte

Boot Partition 2 Partition 3

The tmpfs filesystem mounted on /var/tmp stores files in RAM. The amount of RAM
used is not fixed and depends on the total size of all the files stored in the filesystem.
To prevent it using all available RAM the maximum size has been set to 4Mbyte.

If you wish to increase the size of the RAM disk edit /etc/fstab and increase the size
parameter for /var/tmp. After you have done this reboot the system.

Boot Times
As supplied the PEGASUS board will boot in around 30s. This can be reduced by
disabling unused services.

BIOS Settings
In order to allow the user to add an IDE device the BIOS settings will need to be
modified.

To access the BIOS settings, during the POST (Power On Self Test) memory check the
user can press the key when the console is the PC Keyboard and video monitor,
or the <Control-C> key when the console is a serial link. This causes the BIOS setup
screen to load.

In Serial Console Mode, in order to go Up/Down within this screen the user would have
to press <Control-E>/<Control-X>, to go to the next cell to press <Tab> and to select
press <Space>. In a VGA Console Mode, the usual commands and Arrows should be
used.

More details are given within the PEGASUS Technical Manual that could be found on
the Development Kit CDROM in:

/Manual/pegasus.pdf.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 8

Configuration files and boot scripts
Arcom Embedded Linux uses a System V type init process. Scripts are placed in
/etc/init.d/ with symbolic links for each runlevel in /etc/rc?.d/. The ‘?’ may be
replaced with one of the following characters:

Character Function Description
S Startup Run once at boot time
0 Halt Run on system shutdown
1 Single Run on entering single user mode
2 Normal (Serial) Serial only console
3 Normal Serial and VGA console
4 Normal VGA only console
5 Normal VGA only console
6 Reboot Run when rebooting

The default runlevel is level 2 or 3, as configured by the default kernel command line.

When runlevel changes, the K* scripts in the /etc/rc?.d/ directory corresponding to
the new runlevel are executed in alphanumerical order (with an argument of ‘stop’).
Then the S* scripts in the same directory are executed in alphanumerical order (with an
argument of ‘start’).

Arcom specific configuration files (used in the boot scripts) are located in
/etc/config.

File Description Format
/etc/config/console/keymap Default keymap

loaded during
boot

Symlink to the real
keymap. (Usually
under
/usr/lib/kbd/key
maps).

/etc/config/network/hostname Hostname HOSTNAME=hostname

/etc/config/network/interfaces/* Network interface
configuration.
One file per
interface.

DEVICE=network device
name
IPADDR=IP address
NETMASK=netmask
USEDHCP=[yes|no]

/etc/config/network/routes/gateway Default gateway
IP address

GATEWAY=IP address

/etc/config/hardware/serial/* Serial port IRQ
configuration.

DEVICE=path to device
node
IRQ=IRQ

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 9

Making an Application Run Automatically at Boot
If you want an application to run automatically on boot then you need to do the
following.

1. Write a script (e.g. someapp) that will run your application and put it in the
directory /etc/init.d.

2. Make the script executable
chmod +x /etc/init.d/someapp

3. Make a symbolic link in /etc/rc2.d (e.g. /etc/rc2.d/S99someapp) that points
to the script in /etc/init.d. Using 99 ensures that you application will be
started after all other services.
ln -s /etc/init.d/someapp /etc/rc2.d/S99someapp

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 10

Arcom Embedded Linux with Java Technology
Development Kit CDROM Contents

Directory Name Description
Linux Specific

Utils Embedded Linux utilities
install Installation files
install/boot Kernel and Boot loader Images
Boot Bootable CD disk image
source Arcom Embedded Linux Source

Java Specific
Java Examples Java Examples for IBM J9 and GCJ

WSDD Specific
Wsdd IBM WebSphere Device Developer
wsddupdates Updates needed for WSDD

General
Acrobat Reader Acrobat PDF Reader
Licenses Copies of common licenses used by the

software included in the development kit
Manual Arcom and 3rd party documentation
Reference Board reference documentation

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 11

Installation
The PEGASUS development kit CDROM contains a bootable installation image which
can be used to return your PEGASUS board to the factory shipped state or to reinstall
with a different set of components. It can also be used as a rescue disk to attempt to
repair a damaged system.

Installing on a Headless System
Connect a serial terminal (VT100) to the first serial port (/dev/ttyS0, COM1),
minicom running on your Linux Host PC connected via a null-modem cable is a
common setup. Configure the serial terminal to 115200 baud, no parity and 8 data bits
(in minicom press <Control-A> then Z to access the main menu). Setting up serial
terminals is beyond the scope of this document (see the Serial Terminal HOWTO for
details).

1. Ensure the CD-ROM is connected.

Note: You should not connect any device as a slave on the IDE bus unless there
is also a master device, doing so will cause initialization of the IDE bus to take
several seconds longer the usual. Therefore you should connect the CD-ROM as
a master unless you also have a hard disk attached.

2. Power on the board.
3. Ensure the BIOS is set up so that it can boot from CD-ROM.
4. Insert the CD and reboot. You may need to hold down [ALT] or <Control-C> to

cause the system to boot from the BIOS device rather than flash.
5. The CD will start and display some text and a prompt

Welcome to the Arcom Embedded Linux n.nn Installation CD
…
boot:

6. Enter ‘sermaster’ then [ENTER] if the CD-ROM drive is configured as master or ‘serslave’

then [ENTER] if the CD-ROM is configured as slave. If unsure check the jumper setting on
the drive or try both.

7. After Linux has finished booting, the installation program will start. Use [TAB] and the cursor
keys to select fields and [SPACE] to toggle check boxes and press buttons.

8. You will be given the option of a ‘Quick Install’ or a ‘Custom Install’. Choose ‘Quick Install’ to
reprogram the flash as it left the factory and skip to step 19. Other wise choose ‘Custom
Install’ and continue.

9. Select any required optional components.
10. Press the ’Next’ button to continue.
11. Configure the network. A hostname is required, although you can accept the default. If you

have a DHCP server on your network then you may choose to use DHCP and have an IP
address assigned at boot time, otherwise you must fill in an IP address and network mask.
The default gateway and name server are optional

12. Press the ‘Next’ button to continue.
13. Ensure the ‘Boot from flash’ and ‘Use serial console’ checkboxes are enabled if you wish to

boot from the onboard flash using a serial console. If you do not have a VGA card attached
you may want to ensure that you only run login on ttyS0, this will prevent errors.

14. Press the ‘Next’ button to continue.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 12

15. Edit the kernel parameters if required, although this will not normally be needed.
16. Press the ‘Next’ button to continue.
17. Normally you will want to erase both partitions, however you can choose not to if you have

vital data.
18. Press the ‘Next’ button to continue.
19. Once the system has finished installing, it will reboot. Remove the installation CD.
20. The system will boot and present a login prompt. Login as ‘root’ with the password ‘arcom’

or as ‘arcom’ also with the password ‘arcom’.

Installing on a Headed System (With additional PC/104 VGA board)

1. Ensure the display, keyboard and CD-ROM drive are correctly plugged in.

Note: You should not connect any device as a slave on the IDE bus unless there is also
a master device, doing so will cause initialization of the IDE bus to take several seconds
longer the usual. Therefore you should connect the CD-ROM as a master unless you also
have a hard disk attached.

2. Power on the board.
3. Ensure the BIOS is set up so that it can boot from CD-ROM.
4. Insert the CD and reboot. Depending on whether a bootable hard disk drive is

attached, you may need to hold down the [ALT] key to bypass the Linux flash
boot loader.

5. The CD will start and display some text and a prompt

Welcome to the Arcom Embedded Linux n.nn Installation CD
…
boot:

6. Enter ‘master’ then [ENTER] if the CD-ROM drive is configured as master or

‘slave’ then [ENTER] if the CD-ROM is configured as slave. If unsure check the
jumper setting on the drive or try both.

Note: After 30 seconds without a key press the CD will continue booting using a
serial terminal as the console. Reboot if this occurs.

7. Continue with step 7 given in the instructions for installing on a headless system

(above).

Using the Development Kit CD as a Rescue Disk
Should the flash become unbootable the CD can be used to reinstall the flash boot
loader and fix problems with the installation. The installation program runs on the first
virtual terminal (VT), while a shell is available on each of terminals 2 through 5. To
change to VT2 press [ALT-F2], and similar for the other terminals. To return to the
installation press [ALT-F1]. Pressing ‘Back’ from the first screen of the installation
program will also present a shell prompt.

For headless systems installation runs on the first serial line and a shell is available on
the second serial line. Again, pressing ‘Back’ from the first prompt will drop to a shell.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 13

The boot loader image, called stage2.rom, is in the directory /cd/install/boot/.

The kernel image is in the package /cd/install/boot/kernel-image_2.4.18-
1_pegasus.ael in the file /boot/vmlinuz. You can extract it with (on a single line)

/cd/utils/extract-kernel /cd/install/boot/kernel-image_2.4.18-
1_pegasus.ael /var/tmp/bzImage

Install the boot loader with the flashboot command (on a single line)

flashboot –2 stage2.rom /var/tmp/bzImage 2
console=ttyS0,115200n8 root=1f02 ro

Mount the flash partitions

mount –t jffs2 /dev/mtdblock1 /mnt/1
mount –t jffs2 /dev/mtdblock2 /mnt/2

Setup the network

ifconfig eth0 IP address netmask netmask
route add default gw IP address of default gateway

or
/etc/init.d/dhcpd start

The CD contains most of the utilities that are installed (ftp client, nano text editor etc).

File System
The flash can be accessed via the compressed Journaling Flash File System (JFFS2).
This places a file system onto the Flash transparently to the user. Arcom Embedded
Linux is supplied preinstalled on the JFFS2 file system.

Flash partitions with JFFS2 are mounted using a special pseudo-block device (major:
31)

mount –t jffs2 /dev/mtdblock1 mount-point

The block devices are

Device Minor number Description
/dev/mtdblock0 0 1st partition (boot sector)
/dev/mtdblock1 1 2nd partition (/var)
/dev/mtdblock2 2 3rd partition (/)

The first partition (/dev/mtdblock0) does not have a JFFS2 partition when supplied,
the user may put one on if the board is not required to boot from flash.

No special utility is required to make a JFFS2 file system. Simply erase the whole of
the partition (with eraseall) and mount as normal. This will cause an empty JFFS2 file
system to be created.

JFFS2 partitions do not need to be fsck’ed (this is done when mounting). The supplied
/sbin/fsck.jffs2 is a dummy which always succeeds and is present to simplify the
boot scripts.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 14

Although JFFS2 is a journaling file system this does not preclude the loss of data.
While the filesystem will remain in a consistent state and always be mountable, data
can be lost if the board is powered down during a write or due to the write caching
strategy used by Linux for file system operations resulting in the data not being written
before a power cycle.

Refer to http://sources.redhat.com/jffs2 for further information.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 15

Installing or Uninstalling Components
As shipped the flash file system on the PEGASUS contains several optional
components, including the J9 Java Virtual Machine, GCJ runtimes and the OpenBSD
Secure Shell (SSH). If your application does not require one or more of these and you
wish to free some space in the flash then you may remove certain components or
simply reinstall (as in the section ‘Installation’ on page 11) and choose not to install
those components. Conversely if you require a component which is not installed by
default or which you did not install you may wish to add components to the board.

Removing Components from an Already Installed System
Each of the optional components is supplied with a script which is able to remove them.
These scripts can be found on the CD as /install/comp/<name>/<name>.remove.
(where <name> is the component name). To remove a component simply copy the script
to the board (via NFS or FTP) or mount the CD and run the script. It is usual for one or
two files or directories to be un-removable, often this is because the directory is not
empty. In such cases you will be given a warning and can check if you want to remove
the file or directory by hand.

Adding Components to an Already Installed System
Each optional component is stored in one or more packages under the directory
/install/comp/<compname>/. Each package has an extension of .ael and
includes a version number in the file name. To install a component simply install each
package, installing only a subset of packages is possible but not advised. A utility,
arcomunpack, is supplied in the /utils/ directory on the CDROM and will install a
package passed to it on the command line. An optional second parameter allows you to
specify an alternative root directory.

Example
To install the ppp component (which has only a single package):

arcomunpack /cd/install/comp/ppp/ppp_2.4.0-1_pegasus.ael

To install a package to an alternative prefix:

arcomunpack xfree86_4.1.0-3_pegasus.ael /flash/

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 16

Utilities

Eraseall
The eraseall utility is found in the CD’s /utils directory.

eraseall erases all of a given MTD device.

Usage

eraseall [MTD char device]

Note: Take care when using this command as specifying the wrong device will cause all
data on that file system to be lost.

Example:
To erase all of the boot partition.

eraseall /dev/mtd0

Flashboot
The flashboot utility installs or uninstalls the flash boot loader and kernel image, it is
found in the CD’s /utils directory.

The boot loader consists of 3 main components

• stage 2 loader
• kernel command line
• kernel image.

All components must be installed correctly for the boot loader to work.

A custom, precompiled kernel image is supplied on the Development Kit CD in the
package /install/boot/kernel-image_2.4.18-3_pegasus.ael. Rather than
installing the package (which is unnecessary), you can extract only the kernel image
using the extract-kernel utility found on the CD in the /utils directory.

This command will produce a bzImage which is equivalent to one you would build
yourself.

extract-kernel kernel-image_2.4.18-3_pegasus.ael /var/tmp/bzImage

The kernel sources are available in the /source directory on the development kit CD.
The configuration for the supplied kernel is contained in the file pegasus-FLASH.conf
in the source archive.

Kernel Command Line

There are several command line options which can be passed to the kernel. More
details can be found in ‘Documentation/kernel-parameters.txt’

In order for the kernel to use the serial port as its console you must pass the
‘console=ttyS0,115200n8’ parameter to use the first serial port at 115200 baud, no
parity and 8 bits. For other options please consult the kernel parameters documentation.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 17

If the standard partition/filesystem layout is used the kernel parameters must contain
‘root=1f02‘ or the root filesystem on the flash will not be mounted.

In the standard configuration the board will not be fitted with a VGA interface attached
and so the board should boot in runlevel 2, this can be accomplished by prepending a
‘2’ to the command line. Without this parameter warnings will be generated when the
system tries to open a login session on a non-existent VGA console.

Stage 2 Boot loader

The stage 2 boot loader is responsible for loading the kernel from the flash drive and
booting it, and can be found on the development kit CD as

• /install/boot/stage2.rom

Usage:

flashboot [Options] [Kernel image] [Kernel options]

Options:
-b,--board=BOARD

Board. You should always specify ‘pegasus’ here
-2, --stage2=LOADER

Location of the stage 2 boot loader image. [default: /boot/stage2.rom]
-d, --device=DEVICE

MTD char device to install boot loader to and image. This should always be the
first MTD device or the boot loader will not work. [default: /dev/mtd0]

-k, --kernel-only
Only install a kernel image and command line. The boot loader must already be
installed or it will not boot.

-n, --no-erase
Don't erase flash before installing - flash must already be erased or the images
will not be written correctly.

-u, --uninstall
Disable boot loader. This does not erase the flash and reinstalling will require
erasing.

--help
Display concise help and exit.

--version
Output version information and exit.

Optional Splash Screen

If the board is fitted with an optional PC-104 VGA board then it is possible to have a
splash screen displayed rather than the normal Linux boot messages, however this
consumes space in the flash boot partition and hence reduces the maximum size of
kernel which can be used.

The splash screen is either a 640 × 480, 800 × 600 or 1024 × 768, 256 color Windows
format bitmap. It must be less than 96 kilobytes in size. RLE8 encoded bitmaps only
are supported.

To install a splash screen use the –-splash=<BMP> (or –s <BMP>) option to flashboot.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 18

Examples:
Extract a kernel image from a package into the file bzImage

extract-kernel kernel-image_2.4.18-1_pegasus.ael bzImage

Reinstalling all of the boot loader (on a single line)

flashboot –2 stage2.rom bzImage 2 root=1f02 ro
console=ttyS0,115200n8

Reinstalling all of the boot loader with additional splash screen (on a single line)

flashboot –2 stage2.rom –s splash.bmp bzImage 2 root=1f02 ro

Changing the command line (this requires reinstalling the kernel image)

flashboot –k bzImage 2 root=1f02 ro

Bypassing the Flash Boot Loader
The following table enumerates when the board will boot from Flash and when it will
boot from a BIOS configured device. A hard disk is considered to be configured if the
BIOS settings for ‘IDE DRIVE GEOMETRY’ (under ‘Basic CMOS Configuration’) for
IDE0 is set to anything other than ‘Not Installed’. To disable a hard disk set this BIOS
entry to ‘Not Installed’. Note that an attached hard disk will still be visible to Linux even if
the BIOS is configured to ‘None’, but that for the purposes of booting it does not exist.

HDD Configured CDROM Attached Normal Boot [ALT] held down
O O Flash None/Error
P O BIOS Device Flash
O P Flash BIOS Device
P P BIOS Device Flash

Note: To boot from a HDD or CDROM it must be bootable, attached to the system and
configured in the BIOS. The BIOS ‘BOOT ORDER’ (under ‘Basic CMOS Configuration’)
must be configured to include the device which should be configured in the ‘DRIVE
ASSIGNMENT ORDER’ section.
Note: Attempting to boot from a BIOS device when none of the devices in the BIOS
boot sequence are present will result in an error.
Note: When using a serial console it is not possible to detect and [ALT] key press. You
can use Control-C instead.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 19

Using Secure Shell (SSH)

Introduction to SSH
SSH (The Secure SHell) is a secure replacement for several common internet protocols
such as the Berkley r* tools (rlogin, rsh, rexec), ftp and telnet all of which have security
flaws when used in a non-trusted network environment (primarily the plaintext exchange
of passwords across a non-trusted network). It features several enhancements over
these tools, such as:

• All traffic sent across the network (critically this includes passwords) is encrypted
using strong encryption;

• Prevent spoofing and man in the middle attacks using host keys;
• Tunneling of arbitrary connections through an SSH pipe, known as port

forwarding (in particular X11 forwarding);
• Enhanced authentication methods which improve upon normal password based

mechanisms.

The server also benefits from SSH especially if it is running a number of services. If you
use port forwarding, otherwise insecure protocols (for example, POP) can be encrypted
for secure communication with remote machines. SSH makes it relatively simple to
encrypt different types of communication normally sent insecurely over public networks.

For more information on SSH and it’s advantages and usage please visit
http://www.openssh.org.

A large number of client and server programs can use the SSH protocol, including many
open source and freely available applications. Several different SSH client versions are
available for almost every major operating system in use today.

Red Hat Linux 7.2 includes the OpenSSH server (openssh-server) and client
(openssh-clients) packages, as well as the general OpenSSH package (openssh)
which must be installed for either of them to work. Please see the Official Red Hat Linux
Customization Guide for instructions on installing and deploying OpenSSH on your Red
Hat Linux system.

There are also several SSH clients available for non-Linux system, including Microsoft
Windows platforms, such as

• PuTTY (http://www.chiark.greenend.org.uk/~sgtatham/putty), a Windows version
of the ssh program

• WinSCP (http://winscp.vse.cz/eng) a graphical version of SCP for windows.

Examples of SSH Commands

The ssh Command

The ssh command is a secure replacement for the rlogin, rexec, rsh and telnet
commands. It allows you to log in to and execute commands on a remote machine.
Logging in to a remote machine with ssh is similar to using telnet. To log in to a remote
machine named penguin.example.net, type the following command at a shell prompt:

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 20

ssh penguin.example.net

The first time you ssh to a remote machine, you will see a message similar to the
following:

The authenticity of host ‘penguin.example.net’ cannot be
established. DSA fingerprint is
94:68:3a:bc:f3:9a:9b:01:5d:b3:07:38:e2:11:0c.
Are you sure you want to continue connecting (yes/no)?

If you wish you can confirm this fingerprint matches the key used by the server and then
enter ‘yes’ to continue. This will add the server to your list of known hosts and display
the following message:

Warning: Permanently added ‘penguin.example.net’ (DSA) to the
list of known hosts.

Next, you'll see a prompt asking for your password for the remote machine. After
entering your password, you will be at a shell prompt for the remote machine. If you use
ssh without any command line options, the username that you are logged in as on the
local machine is passed to the remote machine. If you want to specify a different
username, use one of the following commands:

ssh –l username penguin.example.net
ssh username@penguin.example.net

The ssh command can be also used to execute a command on the remote machine
without logging in to a shell prompt. The syntax is ssh hostname command. For
example, if you want to execute the command ls /usr/share/doc/ on the remote
machine penguin.example.net, type the following command at a shell prompt:

ssh penguin.example.net ls /usr/share/doc/

After you enter the correct password, the contents of /usr/share/doc/ will be displayed,
and you will return to your local shell prompt.

Using the scp Command

The scp command can be used to transfer files between machines over a secure,
encrypted connection. It is similar to rcp.

The general syntax to transfer a local file to a remote system is

scp localfile hostname:remotefile

As with the ssh command the hostname can have username@ prepended to use a
different username on the remote machine. The remote file is taken relative to your
home directory on the remote machine, or an absolute path can be specified.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 21

To transfer the local file shadowman to your account on penguin.example.net, type the
following at a shell prompt:

scp shadowman username@penguin.example.net:shadowman

This will transfer the local file shadowman to ~username/shadowman on
penguin.example.net.

Multiple files can be specified as the source files. For example, to transfer the contents
of the directory downloads to an existing directory called uploads on the remote
machine penguin.example.net, type the following at a shell prompt:

scp downloads/* penguin.example.net:uploads

All of the above commands can be reversed in order to transfer files from the remote
host to the local host. You should be careful to escape any shell globbing characters
(such as *). To transfer several images from a remote machine you could use the
following command:

scp username@penguin.example.net:*.jpg .

Using the sftp Command

The sftp utility can be used to open a secure, interactive FTP session. It is similar to ftp
except that it uses a secure, encrypted connection. The general syntax is:

sftp username@hostname.com

Once authenticated, you can use a set of commands similar to using FTP. Refer to the
sftp manual page for a list of these commands (execute the command ‘man sftp’ at a
shell prompt). The sftp utility is only available in OpenSSH version 2.5.0p1 and higher.

Removing insecure services

The default install of Arcom Embedded Linux includes telnet and ftp daemons which
are made obsolete by the use of SSH. They remain in the distribution in order to
maintain backwards compatibility. However, we recommend you disable them unless
you explicitly require them.

To disable ftpd and telnetd you should edit the file /etc/inetd.conf and look for the
following (or similar) lines

ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd –l
telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd

You should disable one or both of these lines into comments by placing a # character at
the start (turning to line into a comment), and then restart inetd using the following
command

/etc/init.d/inetd restart

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 22

It is also possible to restrict access to these services to certain IP addresses or hosts
without disabling them completely using tcpd. Consult the tcpd(8) and host_access(5)
man pages for details.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 23

Compiling a Kernel
An Arcom Embedded Linux kernel source tree is supplied on the Arcom Development
Kit CD in the /source directory. It consists of an upstream tarball
(kernel_2.4.18.orig.tar.gz) and a patch (kernel_2.4.18-3.diff.gz)
containing Arcom Control Systems’ modifications.

The kernel can be recompiled on your host system or on a Red Hat hard disk
installation attached to the board. The kernel cannot be recompiled from a system
booted from the flash disk, since a compiler and the associated tools are not loaded on
the flash file system, since they would consume valuable flash disk space.

Mount the CD

mount /mnt/cdrom

Copy the kernel source from the CD (to for example /usr/local/src/)

cp /mnt/cdrom/source/kernel_2.4.18.orig.tar.gz /usr/local/src
cp /mnt/cdrom/source/kernel_2.4.18-3.diff.gz /usr/local/src

Unpack the source code

cd /usr/local/src
tar xzf kernel_2.4.18.orig.tar.gz

Apply the patch

cd kernel-2.4.18
zcat ../kernel_2.4.18-3.diff.gz | patch –p1

Configuring the kernel

make menuconfig

Select ‘Load an Alternate Configuration File’ from the Main menu. Several starting
configurations are provided

pegasus-FLASH.conf Suitable for booting from flash. (Used by the default flash
install).

cdrom.conf Used on the bootable development kit CDROM.

Configure the kernel as required, save and exit.

Build the source dependency information

make dep

Build the kernel image

make clean
make bzImage

If your kernel configuration includes modules then build the modules. (All of the supplied
configuration are modular).

make modules

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 24

If necessary install the modules. Modules can be installed to an alternate prefix by
adding INSTALL_MOD_PATH=<prefix> to the modules_install line. This should be used
to install the module tree to a temporary directory before copying to the target, without
this option they will be installed to /lib/modules/2.4.18, which could potentially
overwrite your host system’s modules, which could potentially damage your host
system.

make modules_install INSTALL_MOD_PATH=/tmp/pegasus-modules

Your new kernel image is arch/i386/boot/bzImage. It should be installed using
flashboot.

Installing Applications on the Flash File System
Application can be compiled on a RedHat 7.2 system and copied to the board using ftp
or scp.

Using the application ‘dir’ and a Pegasus board with address ‘penguin.example.net’
as an example.

Scp the application from the host system to the board which should have its root
filesystem mounted read/write (use the command ‘rw’).

scp /usr/bin/dir root@penguin.example.net:/usr/bin/dir

On the board (as root) make the application executable

chmod +x /usr/bin/dir

Attempt to execute the application

/usr/bin/dir

The application will report that libtermcap.so.2 is missing. You can confirm this by
tracing the objects which are loaded

LD_TRACE_LOADED_OBJECTS=1 /usr/bin/dir
Reports

libtermcap.so.2 => not found
libc.so.6 => /lib/libc.so.6 (0x40017000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

The strip command removes and unnecessary debug and comment sections from
executables and libraries. This is useful because it can greatly reduce the size of these
files in situations where this information is not needed. Strip and copy any missing
libraries across. The –o is important to avoid stripping the binaries on your host system,
which may hinder debugging.

strip /lib/libtermcap.so.2 –o /tmp/libtermcap.so.2
scp /tmp/libtermcap.so.2
root@penguin.example.net:/lib/libtermcap.so.2

To make the system aware of new libraries you should run the ldconfig command

/sbin/ldconfig

Run the application to test
dir

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 25

Java Overview
Java is a programming language designed with the goal of reducing complexity for the
programmer. It wraps complex tasks, such as multithreading and network programming
in language features and class libraries that can help to make these tasks trivial. It also
tackles cross platform programming, dynamic code loading and security.

Java is more portable than some other languages due to its object code. Compilers for
most languages generate native machine code for the target processor, which then runs
at the native speed of the system. The Java compiler generates object code (known as
byte code) for a theoretical machine known as the ‘Java Virtual Machine’. The Java
Runtime Environment includes an emulator for this virtual machine as well as a set of
class libraries. This means that byte code will run on any computer for which the Java
Runtime Environment is available, no matter where it was compiled. The trade off is in
performance: the interpreter adds a level of overhead to the program.

The IBM J9 Java environment includes a SmartLinker, which is run on the host system
and links only the required classes from the class library with your application to create
a JXE executable. A JXE is a self contained Java program and hence the IBM J9
environment requires only a Java Virtual Machine and not a potentially large Java
Runtime Environment to be installed on the target.

Arcom Embedded Linux and Java
The Arcom Embedded Linux with Java Technology Development Kit is supplied with the
IBM J9 Java Virtual Machine and runtime libraries pre-installed on the PEGASUS, these
take up about 2 megabytes of flash. Java programs can be developed on a host system
using the IBM WebSphere Device Developer IDE supplied on the development kit CD.

Alternative Class Libraries
WebSphere supports several levels of class library, trading off library size against
features. By default the PEGASUS board comes installed with the jclMax configuration
which provides maximum features but at a space cost. Therefore you should in general
select ‘Max Class Library (jclMax)’ when creating a new project (see below).

If you wish to use an alternative class library, to save space for example, then you may
choose to base your project on another class library. If you do this then you may choose
to remove the jclMax support libraries from /opt/wsdd4.0 on the target. You will also
need to copy new support libraries from your host system. These support libraries can
be found in /opt/wsdd/wsdd4.0/ive/bin/ on a host system which has the WSDD
environment installed (see below). In general it is easiest to select which libraries you
need simply by running your application, observing the error messages and installing
the requested libraries.

Installing IBM WebSphere Device Developer IDE
Included on the Development Kit CD is the IBM WebSphere Device Developer (WSDD)
IDE that should be used to build, smart link and test Java applications on your Red Hat
host system before downloading to the PEGASUS board. Before installing the IDE

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 26

please read the IBM license for J9/WSDD, this is on the CD in the file
Licenses/WSDD.txt.

To install the IDE on your host system follow these instructions (you will need to be the
root user):

1. Mount the CD
mount /mnt/cdrom

2. Change to the directory on the CD containing the packages
cd /mnt/cdrom/wsdd

3. Install the software (you will need to have root user privileges).
rpm –ivh main-ide-4.0-2171.i386.rpm

In order to make use of WSDD for developing embedded applications for J9 the IDE
needs to be updated with the WebSphere Custom Environment (WCE) package, which
provides the jclMax build time support. This is also supplied on the Development Kit
CDROM. To install the WCE updates follow these instructions (as root):

1. Mount the CD
mount /mnt/cdrom

2. Launch the WSDD IDE
/opt/wsdd/eclipse/wsdd &

3. Select Help -> Device Developer Updates from the menu, this will
present the Software Updates dialog:

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 27

4. Click on the Add… button. This will present the new components dialog.
5. Towards the bottom enter the location as

file://mnt/cdrom/wsddupdates/wsdd/4.0/wce and the description as
‘WebSphere Custom Environment’. Press the Add Button and select the
newly created entry in ‘Additional Locations’, then press Next.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 28

6. You will be presented with a dialog allowing you to select which WCE
components you wish to install. This tutorial requires the JCL Max configuration,
however it is suggested that all components are installed

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 29

7. Click Finish to install the components and then Exit WSDD.

Building and Running Applications Using IBM WSDD
Full instructions for building and running applications can be found in the WSDD
documentation installed in /opt/wsdd/wsdd4.0/doc/ by the RPM. The following is
an example of how to create a simple application.

1. Run the WSDD IDE
/opt/wsdd/eclipse/wsdd &
The main WSDD workspace window should now be displayed.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 30

2. Select ‘File -> New -> Other…’ from the menu.
3. In the resulting dialog select ‘WCE for J9’ and ‘Create WCE Project’ and

click Next.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 31

4. Enter the project name as ‘HelloWorld’ and click Next.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 32

5. Select ‘Max Class Library (JCL Max)’ as the class library and press Next.
6. Accept the defaults in all other windows by pressing Finish.

The WebSphere IDE should now be displayed with a perspective (or view) open on the
new project.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 33

Adding a Class to Your Application
Next we will add a simple class to the application.

1. Select ‘File -> New -> Java Class’. Ensure that the folder is
‘/HelloWorld/src’ and name the class ‘HelloWorld’. Tick the box to create
a method stub for ‘public static void main(String[] args)’. Click
Finish to create the new class.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 34

2. In the main WSDD window double click ‘HelloWorld -> src -> (default
package) -> HellowWorld.java’ from the ‘Packages’ panel and add the
following code inside of the main method:
System.out.println(“Hello World!\n”);

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 35

Building and Running Your Application

1. Click ‘File -> Save HelloWorld.java’ and then ‘Project -> Build
All’.

2. Click on the ‘Run’ Button (), Select ‘Java Application Locally’ and
press Next.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 36

3. Select the ‘HelloWorld’ class and click Finish. You will be placed into a
debugging perspective and should see ‘Hello World!’ in the console panel.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 37

Creating a HelloWorld.jxe
To enable your programs to run on the J9 Java Virtual Machine on the target board you
need to create a .JXE file. The WSDD SmartLinker is used to do this.

1. Click the Java perspective button () at the top left, under the toolbar.
2. Double Click on the ‘wsddbuild.txt’ to access the build configuration panel.
3. Click on the ‘Add Build’ button.
4. Ensure the main class is ‘HelloWorld’ and the platform is ‘J9 for Red Hat

X86’. Name the build ‘HelloWorld’ and click Next.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 38

5. We want to build everything into the JXE so uncheck all the check boxes under
‘Java libraries not to include in JXE/JAR’. Ensure the output format is JXE. Press
Next.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 39

6. Select ‘JXE or Jar Application Locally’ as the target. Select ‘Run and
Debug’ as launch mode. Click Finish.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 40

7. In the Build pane, select the new ‘lnxx86/HelloWorld’ and click ‘Perform

Build’. The SmartLinker will run.

Test HelloWorld.jxe
1. At the bottom of the build pane, click the ‘Launches’ tab. The pane will change to

reflect the launches which you have configured.
2. Select ‘Run and Debug local platform/HelloWorld.jxe as Jxe or

Jar application locally’ and click ‘Run’ from the bottom of the pane.
3. The JXE will run, and produce the same output as the previous test run.

Running the JXE on the Target
Using FTP, transfer workspace/HelloWorld/lnxx86/HelloWorld.jxe (relative
to your home directory) to a suitable directory on the target (e.g. /home/arcom). See
the Quick Start Manual for details on using FTP, or better, SCP.

1. Run the HelloWorld.jxe with the J9 Java Virtual Machine
j9 –jxe:/home/arcom/HelloWorld.jxe

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 41

GCJ
GCJ is an ahead-of-time optimizing compiler for the Java Programming Language. It
can compile:

• Java source code directly to native machine code,
• Java source code to Java byte code (class files),
• Java byte code to native machine code.

Compiled applications are linked with the GCJ runtime, libgcj, which provides the core
class libraries, a garbage collector, and a byte code interpreter. libgcj can dynamically
load and interpret class files, resulting in applications consisting of a mixture of compiled
and interpreted classes.

Most of the APIs specified by ‘The Java Class Libraries’ Second Edition and the ‘Java 2
Platform supplement’ are supported, including collections, networking, reflection and
serialization. AWT and RMI are currently unsupported, but work to implement them is in
progress.

Advantage of Using GCJ

• Native code typically executes faster than byte code executing on a Java Virtual
Machine.

• The Java code can call C/C++ libraries and code through the Cygnus Native
Interface (CNI) and C via JNI.

• GCJ can compile byte code to native code.

Disadvantages of Using GCJ

• Java programs compiled to native code are not portable (although GCJ does
include a byte code compiler and interpreter).

• At present some library classes are missing.
• GCJ runtime libraries are quite large (4.5 Mbytes).

Installing GCC on the Host System
GCJ is a part of the GNU Compiler Collection (GCC). Before installing GCC on your
host system please read the GNU General Public License which is on the development
kit CD as ‘Reference/Licenses/GPL.txt’. When you have unpacked the source
tarball you should also read ‘gcc-3.0/libjava/LIBGCJ_LICENSE’.

You need to install GCC on to your host system to allow you to design and build
applications which can then be transferred to, run and tested on the target PEGASUS
board.

1. Copy the GCC tarballs from the development kit CD directory ‘utils/gcc’ to an
appropriate directory (e.g. ‘~/gcj’), on the host system.

2. Unzip and untar all the archives by typing the following
tar xfz gcc-core-3.0.tar.gz
tar xfz gcc-g++-3.0.tar.gz
tar xfz gcc-java-3.0.tar.gz

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 42

3. Apply the Arcom patch
patch –p0 –i gcc-3.0-ael.patch

4. Create a build directory ‘gcc-3.0-build’ and change to that directory
mkdir gcc-3.0-build
cd gcc-3.0-build

5. Configure using the configure script
../gcc-3.0/configure --prefix=/opt/gcc-3.0 --enable-threads=posix

Note: If you specify an alternate prefix, ensure that you don’t overwrite your
current gcc.

6. Build GCC

make
7. Install (you must have root user privileges)

make install

GCJ Examples
On the development kit CD are some example applications for GCJ in the
‘Java_Examples/gcj/’ directory.

• HelloWorld - directory for HelloWorld example
• cni – directory for a CNI example

There are Makefiles and README files for each of these examples in the appropriate
directory.

Ensure that you set the LD_LIBRARY_PATH environment variable

export LD_LIBRARY_PATH=”/opt/gcc-3.0/lib”
and set the PATH

export PATH=”/opt/gcc-3.0/bin:$PATH”
before compiling the examples.
If you don’t the executable will not run on the Target Board.

For more detailed information on compiling and linking with GCJ see
‘/Reference/GCJ/gcj.html’ on the development kit CD or
http://www.gnu.org/software/gcc/java/.

Running the Application on the Target

1. Transfer the executable HelloWorld to your target board using FTP.
2. Make the application executable

chmod +x ./HelloWorld
3. Run the application

./HelloWorld

Debugging GCJ Applications.
Gdb 5.0 includes support for debugging gcj-compiled Java programs. For more
information see http://www.gnu.org/software/gcc/java/gdb.html.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 43

Notes on Using Cygnus Native Interface (CNI)
When building an application which using CNI (to implement native methods) the
resulting executable is linked to the C++ standard library. This library (/opt/gcc-
3.0/lib/libstdc++.so.3) needs to be transferred to the target system for the
application to run.

For more details on CNI consult the CNI reference manual
/Reference/GCJ/cni.pdf on the development kit CD.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 44

Appendix A - Sources for the Software Contained in
Arcom Embedded Linux.
The following lists some of the packages included in Arcom Embedded Linux, their
source, any patches applied and their licensing terms. Copies of the more widespread
licenses are included on the development kit CD in the directory
/Reference/Licenses, they are also listed in Appendix B. For less widespread
licenses please consult the source distribution for that package.

Linux Kernel 2.4.18
Original source

/source/kernel_2.4.18.orig.tar.gz
 ftp://ftp.kernel.org/pub/linux/kernel/2.4/linux-2.4.18.tar.gz
Arcom Patch
 /source/kernel_2.4.18-3.diff.gz
License
 GPL

GNU Libc Library 2.2.4
Original source
 /source/glibc_2.4.4.orig.tar.gz
Arcom Patch
 /source/glibc_2.4.4-2.diff.gz
License
 LGPL

GNU GCC 3.0
Original Source
 /source/gcc_3.0.orig.tar.gz
Arcom Patch
 /source/gcc_3.0-1.diff.gz
 License
 GPL + ‘special linking exception’ (See ‘GCJ Java Runtime License’ on page 4)

Bash 2.05
Original Source

/source/bash_2.05.orig.tar.gz
Arcom Patch
 /source/bash_2.05-3.diff.gz
License
 GPL

Modutils 2.4.12
Original Source
 /source/modutils_2.4.12.orig.tar.gz
Arcom Patch
 /source/modutils_2.4.12-2.diff.gz
License
 GPL

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 45

TinyLogin 0.80
Original Source

/source/tinylogin_0.80.orig.tar.gz
Arcom Patch
 /source/tinylogin_0.80-2.diff.gz
License
 GPL

BusyBox 0.60.2
Original Source

/source/busybox_0.60.2.orig.tar.gz
Arcom Patch
 /source/busybox_0.60.2-1.diff.gz
License
 GPL

Linux Ftpd 0.17
Original Source

/source/linux-ftpd_0.17.orig.tar.gz
Arcom Patch
 /source/linux-ftpd_0.17-1.diff.gz
License
 BSD

Netkit Ftp 0.17
Original Source

/source/netkit-ftp_0.17.orig.tar.gz
Arcom Patch
 /source/netkit-ftp_0.17-1.diff.gz
License
 BSD

Thttpd 2.19
Original Source

/source/thttpd_2.20c.orig.tar.gz
Arcom Patch
 /source/thttpd_2.20c-2.diff.gz
License
 BSD like

SysVInit 2.78
Original Source

/source/sysvinit_2.78.orig.tar.gz
Arcom Patch

/source/sysvinit_2.78-2.diff.tar.gz
License
 GPL

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 46

Pppd 2.4.0
Original Source

/source/ppp_2.4.0.orig.tar.gz
Arcom Patch

/source/ppp_2.4.0-2.diff.gz
License
 Mixed GPL/BSD

Sysklogd 1.4
Original Source

/source/sysklogd_1.4.orig.tar.gz
Arcom Patch

/source/sysklogd_1.4-2.diff.gz
License
 GPL

XFree86/TinyX 4.1.0
Original Source
 /source/xfree86_4.1.0.orig.tar.gz
Arcom Patch
 /source/xfree86_4.1.0-4.diff.tar.gz
License
 MIT

Contact Arcom if modifications are required to the following software: flashboot, check-
libs, Stage 1 flash boot loader (stage1.rom), BIOS images and BIOS update utilities.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 47

Appendix B - Useful Web Links
General Linux Information
 http://www.linux.org/

GNU GCC
 http://www.gnu.org/software/gcc

GNU GCJ
 http://www.gnu.org/software/gcc/java

Linux Documentation project
 http://www.linuxdoc.org/

The BSD License
 http://www.opensource.org/licenses/bsd-license.html

GNU General Public License (GPL)
 http://www.gnu.org/copyleft/gpl.html

GNU Lesser General Public License (LGPL)
 http://www.gnu.org/copyleft/lgpl.html

The MIT License
 http://www.opensource.org/licenses/mit-license.html

RUTE: The Rute User’s Tutorial and Exposition
 http://rute.sourceforge.net

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 48

Frequently Asked Questions

Question: I have Linux pre-loaded onto an PEGASUS
board. How do I boot from an attached floppy
or CD-ROM drive ?

Answer: During the LINUX boot process, you may need to
hold down the [ALT] key to boot from the BIOS
selected device, depending on the configuration of
the attached peripherals.
Note: The supplied development kit PSU is not
recommended for systems fitted with a CD-ROM
drive, a standard PC/AT power supply is
recommended .

Question: How do I remove Linux from a configured
PEGASUS board ?

Answer: At the Linux prompt type :
dd if=/dev/zero of=/dev/mtd0 count=1
This will destroy the start of the BIOS extension as
stored in flash. When the system is rebooted, the
LINUX BIOS extension will not be found so any
attached bootable media will be used instead.

Question: I see long timeouts and error messages such
as ‘hda: no response (status = 0xa1), resetting
drive’ when initializing the IDE controller. What
can I do?

Answer: You probably have the IDE bus setup with a
device acting as a slave but no master. This
causes Linux to spend several seconds looking for
the master device when initializing the IDE
controller. The solution is to reconfigure the slave
device to be a master, often this will mean
changing the jumpers on the CD-ROM or hard
disk drive.

CONTROL SYSTEMS

PEGASUS Embedded Linux with Java Technology Technical Manual 2192-11367-000-000

Page 49

Question: I periodically see error messages such as
‘INIT: Id "1" respawning too fast: disabled for 5
minutes’.

Answer: This is caused by a service spawned by init dieing
repeatedly. A common cause of this is to run a
login process on a VGA virtual console when there
is no VGA card attached. This happens in
runlevels 3, 4 and 5, but not in runlevel 2. You can
make runlevel 2 default by editing /etc/inittab and
replacing ‘id:3:initdefault’ with ‘id:2:initdefault’.

